OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 6643–6650

Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy

Franck Jaillon, Jun Li, Gregor Dietsche, Thomas Elbert, and Thomas Gisler  »View Author Affiliations

Optics Express, Vol. 15, Issue 11, pp. 6643-6650 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Activity of the human visual cortex, elicited by steady-state flickering at 8 Hz, is non-invasively probed by multi-speckle diffusing-wave spectroscopy (DWS). Parallel detection of the intensity fluctuations of statistically equivalent, but independent speckles allows to resolve stimulation-induced changes in the field autocorrelation of multiply scattered light of less than 2%. In a group of 9 healthy subjects we find a faster decay of the field autocorrelation function during the stimulation periods for data measured with a long-distance probe (30 mm source-receiver distance) at 2 positions over the occipital cortex (t-test: t(8) = -2.672, p = 0.028 < 0.05 for position 1, t(8) = -2.874, p = 0.021 < 0.05 for position 2). In contrast, no statistically significant change is seen when a short-distance probe (16mm source-receiver distance) is used (t-test: t(8) = -2.043, p = 0.075 > 0.05 for position 1, t(8) = -2.146, p = 0.064 > 0.05 for position 2). The enhanced dynamics observed with DWS is positively correlated with the functional increase of blood volume in the visual cortex, while the heartbeat rate is not affected by stimulation. Our results indicate that the DWS signal from the visual cortex is governed by the regional cerebral blood flow velocity.

© 2007 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.5270) Medical optics and biotechnology : Photon density waves
(170.5280) Medical optics and biotechnology : Photon migration
(290.1350) Scattering : Backscattering
(290.1990) Scattering : Diffusion

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 22, 2007
Revised Manuscript: May 5, 2007
Manuscript Accepted: May 9, 2007
Published: May 15, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Franck Jaillon, Jun Li, Gregor Dietsche, Thomas Elbert, and Thomas Gisler, "Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy," Opt. Express 15, 6643-6650 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Dörschel and G. Müller, "Velocity resolved laser Doppler blood flow measurements in skin," Flow Meas. Instrum. 7, 257-264 (1996). [CrossRef]
  2. G. Maret and P. E. Wolf, "Multiple light scattering from disordered media: The effect of Brownian motion of scatterers," Z. Phys. B 65, 409-413 (1987). [CrossRef]
  3. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, "Diffusing-Wave Spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988). [CrossRef] [PubMed]
  4. C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using Human Melanoma Xenografts as a Model," Cancer Res. 63, 7232-7240 (2003). [PubMed]
  5. G. Yu, T. Durduran, C. Zhou, H.-W. Wang, M. E. Putt, H. M. Saunders, C. S. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005). [CrossRef] [PubMed]
  6. U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Q. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, "Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study," J. Biomed. Opt. 11, 064,021 (2006). [CrossRef]
  7. G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time in Situ monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006). [CrossRef] [PubMed]
  8. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurements of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005). [CrossRef] [PubMed]
  9. G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. MohlerIII, and A. G. Yodh, "Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies," J. Biomed. Opt. 10, 024,027-1-12 (2005). [CrossRef] [PubMed]
  10. G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, "Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusionMRI," Opt. Express 15, 1064-1075 (2007). [CrossRef] [PubMed]
  11. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004). [CrossRef] [PubMed]
  12. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, "Non-Invasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy," J. Biomed. Opt. 10, 044,002-1-12 (2005). [CrossRef] [PubMed]
  13. P. E. Roland, B. Larsen, N. A. Lassen, and E. Skinhøj, "Supplementary motor area and other cortical areas in Organization of Voluntary Movements in Man," J. Neurophysiol. 43, 118-136 (1980). [PubMed]
  14. R. J. Seitz and P. E. Roland, "Learning of sequential finger movements in man: A combined Kinematic and Positron Emission Tomography (PET) Study," Eur. J. Neurosci. 4, 154-165 (1992). [CrossRef] [PubMed]
  15. M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging," Psychophysiol. 40, 548-560 (2003). [CrossRef]
  16. During finger opposition for 130 s which leads to a reduction of the DWS decay time measured over the somatomotor area C3 by about 28%, we observe heartbeat increases of typically 20% (J. Li et al., unpublished data).
  17. M. A. Pastor, J. Artieda, J. Arbizu,M. Valencia, and J. C. Masdeu, "Human cerebral activation during steady-state visual-evoked responses," J. Neurosci. 23, 11,621-11,627 (2003). [PubMed]
  18. C. S. Herrmann, "Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena," Exp. Brain Res. 137, 346-353 (2001). [CrossRef] [PubMed]
  19. H. Ito, K. Takahashi, J. Hatazawa, S.-G. Kim, and I. Kanno, "Changes in Human regional cerebral blood flow and cerebral blood volume during Visual stimulation measured by Positron Emission Tomography," J. Cereb. Blood Flow Metab. 21, 608-612 (2001). [CrossRef] [PubMed]
  20. F. B. Mohamed, A. B. Pinus, S. H. Faro, D. Patel, and J. I. Tracy, "BOLD fMRI of the visual cortex: Quantitative responses measured with a graded stimulus at 1.5 Tesla," J. Magn. Reson. 16, 128-136 (2002). [CrossRef]
  21. H. H. Jasper, "The ten-twenty electrode system of the International Federation," Electroencephal. Clin. Neurophysiol. 10, 370-375 (1958).
  22. T. Gisler, H. R¨uger, S. U. Egelhaaf, J. Tschumi, P. Schurtenberger, and J. Ri?cka, "Mode-selective dynamic light scattering: theory versus experimental realization," Appl. Opt. 34, 3546-3553 (1995). [CrossRef] [PubMed]
  23. D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974). [CrossRef]
  24. E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited