OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 6677–6689

Pulse dynamics in mode-locked lasers: relaxation oscillations and frequency pulling

Curtis R. Menyuk, Jared K. Wahlstrand, John Willits, Ryan P. Smith, Thomas R. Schibli, and Steven T. Cundiff  »View Author Affiliations

Optics Express, Vol. 15, Issue 11, pp. 6677-6689 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (210 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical description of the pulse dynamics in a mode-locked laser including gain dynamics is developed. Relaxation oscillations and frequency pulling are predicted that influence the pulse parameters. Experimental observations of the response of a mode-locked Ti:sapphire laser to an abrupt change in the pump power confirm that the predicted behavior occurs. These results provide a framework for understanding the effects of noise on the spectrum of the laser.

© 2007 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 23, 2007
Revised Manuscript: May 4, 2007
Manuscript Accepted: May 10, 2007
Published: May 16, 2007

Curtis R. Menyuk, Jared K. Wahlstrand, John Willits, Ryan P. Smith, Thomas R. Schibli, and Steven T. Cundiff, "Pulse dynamics in mode-locked lasers: relaxation oscillations and frequency pulling," Opt. Express 15, 6677-6689 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000). [CrossRef] [PubMed]
  2. Th. Udem, R. Holzwarth, and T. W.  Hänsch, "Optical frequency metrology," Nature (London) 416, 233-237 (2002). [CrossRef]
  3. S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, E. A. Curtis, and J. C. Bergquist, "Design and control of femtosecond lasers for optical clocks and synthesis of low-noise optical and microwave signals," J. Sel. Top. Quantum Electron. 9, 1072-1080 (2003). [CrossRef]
  4. M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, "Optical atomic coherence at the one second time scale," Science 314, 1430-1433 (2006). [CrossRef] [PubMed]
  5. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, "Direct measurement of light waves," Science 305, 1267-1269 (2004). [CrossRef] [PubMed]
  6. L. Xu, Ch. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T.W. Hänsch,"Route to phase control of ultrashort light pulses," Opt. Lett. 21, 2008-2010 (1996). [CrossRef] [PubMed]
  7. A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, Ch. Spielmann, T.W. H¨ansch, and F. Krausz, "Few-cycle optical waveform synthesis," Appl. Phys. B 72, 373-376 (2001). [CrossRef]
  8. K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, "Detailed studies and control of intensityrelated dynamics of femtosecond frequency combs from mode-Locked Ti:sapphire lasers," J. Sel. Top. Quantum Electron. 9, 1018-1024 (2003). [CrossRef]
  9. H. A. Haus and E. P. Ippen, "Group velocity of solitons," Opt. Lett. 26, 1654-1656 (2001). [CrossRef]
  10. M. J. Ablowitz, B. Ilan, and S. T. Cundiff, "Carrier-envelope phase slip of ultrashort dispersion-managed solitons," Opt. Lett. 29, 1808-1810 (2004). [CrossRef] [PubMed]
  11. D. von der Linde, "Characterization of the noise in continuously operating mode-locked lasers," Appl. Phys. B 39, 201-217 (1986). [CrossRef]
  12. A. L. Schawlow and C. H. Townes, "Infrared and optical masers," Phys. Rev. 112, 1940-1949 (1958). [CrossRef]
  13. H. A. Haus and A. Mecozzi, "Noise of mode-locked lasers," IEEE J. Quantum Electron. 29, 983-995 (1993). [CrossRef]
  14. C. R. Menyuk and B. S. Marks, "Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems," J. Lightwave Technol. 24, 2806-2826 (2006). [CrossRef]
  15. C. R. Menyuk, "Application of multiple-scale-length methods to the study of optical fiber transmission," J. Eng. Math. 36, 113-136 (1999). [CrossRef]
  16. H. A. Haus, "Quantum noise in a solitonlike repeater," J. Opt. Soc. Am. B 8, 1122-1126 (1991). [CrossRef]
  17. T. Georges, "Perturbation theory for the assessment of soliton transmission control," J. Opt. Fiber Technol. 1, 97-116 (1995). [CrossRef]
  18. Y. Takushima, H. Sotobayashi, M. E. Grein, E. P. Ippen, and H. A. Haus, "Linewidth of mode combs of passively and actively mode-locked semiconductor laser diodes," Proc. SPIE 5595, 213-227 (2004). [CrossRef]
  19. F. X. K¨artner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Few-cycle pulses directly from a laser," in Few-cycle Laser Pulse Generation and its Applications, F. X. K¨artner, ed., Topics in Applied Physics, vol. 95 (Springer, Berlin, Germany, 2004), pp. 73-135.
  20. D.-G. Juang, Y.-C. Chen, S.-H. Hsu, K.-H. Lin, and W.-F. Hsieh, "Differential gain and buildup dynamics of selfstarting Kerr lens mode-locked Ti:sapphire laser without an internal aperture," J. Opt. Soc. Am. B 14, 2116-2121 (1997). [CrossRef]
  21. S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, "Experimental evidence for soliton explosions," Phys. Rev. Lett. 88, 073903 (2002). [CrossRef] [PubMed]
  22. W. Koechner and M. Bass, Solid-state lasers (Springer, New York, NY, 2003), pp. 72-75.
  23. L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, "Noise of mode-locked semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 7, 159-167 (2001). [CrossRef]
  24. L. Matos, O. D. Mucke, J. Chen, and F. X. Kartner, "Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers," Opt. Express 14, 2497-2511 (2006). [CrossRef] [PubMed]
  25. R. Paschotta, "Noise of mode-locked lasers (Part I): Numerical model," Appl. Phys. B 79, 153-162 (2004). [CrossRef]
  26. R. Paschotta, "Noise of mode-locked lasers (Part II): Timing jitter and other fluctuations," Appl. Phys. B 79, 163-173 (2004). [CrossRef]
  27. M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, "Quantum-limited timing jitter in actively mode-locked lasers," IEEE J. Quantum Electron. 40, 1458-1470 (2004). [CrossRef]
  28. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment," IEEE J. Quantum Electron. 31, 591-598 (1995). [CrossRef]
  29. N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, "Soliton transmission using periodic dispersion compensation," J. Lightwave Technol. 15, 1808-1822 (1997). [CrossRef]
  30. M. J. Ablowitz and G. Biondini, "Multiscale pulse dynamics in communication systems with strong dispersion management," Opt. Lett. 23, 1668-1670 (1998). [CrossRef]
  31. I. Gabitov and S. K. Turitsyn, "Breathing solitons in optical fiber links," JETP Lett. 63, 861-866 (1996) [Pis’ma Zh. Eksp. Teor. Fiz. 63, 814-819 (1996)]. [CrossRef]
  32. H. A. Haus and M. N. Islam, "Theory of the soliton laser," IEEE J. Quantum Electron. 21, 1172-1188 (1985). [CrossRef]
  33. N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, "Energy-scaling characteristics of solitons in strongly dispersion-managed fibers," Opt. Lett. 21, 1981-1983 (1996). [CrossRef] [PubMed]
  34. T. Yu, E. A. Golovchenko, A. N. Pilipetskii, and C. R. Menyuk, "Dispersion-managed soliton interactions in optical fibers," Opt. Lett. 22, 793-795 (1997). [CrossRef] [PubMed]
  35. Q. Quraishi, S. T. Cundiff, B. Ilan, andM. J. Ablowitz, "Dynamics of nonlinear and dispersion managed solitons," Phys. Rev. Lett. 94, 243904 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited