OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 6750–6761

Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass

Rolindes Balda, Joaquín Fernández, Sara García-Revilla, and Jose M. Fernández-Navarro  »View Author Affiliations

Optics Express, Vol. 15, Issue 11, pp. 6750-6761 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we report the optical properties of Tm3+ ions in tellurite glasses (TeO2-TiO2-Nb2O5) for different Tm3+ concentrations ranging between 0.05 and 1 wt%. Judd-Ofelt intensity parameters have been determined to calculate the radiative transition probabilities and radiative lifetimes of excited states. The stimulated emission cross-sections of the infrared emissions at 1487 nm and 1800 nm have been determined from the line shape of the emission spectra and the lifetimes of levels 3H4 and 3F4 respectively. The emission spectra obtained under 793 nm excitation reveal the existence of energy transfer via cross-relaxation among Tm3+ ions. As a result, the intensity of the infrared 3H43F4 emission at 1487 nm decreases in relation to the one at 1800 nm, as concentration increases. The non-exponential character of the decays from the 3H4 level with increasing concentration indicates the presence of a dipole-dipole quenching process assisted by energy migration. The self-quenching of the 3F43H6 emission at 1800 nm can be attributed to limited diffusion within the active centers.

© 2007 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: April 3, 2007
Revised Manuscript: May 11, 2007
Manuscript Accepted: May 13, 2007
Published: May 17, 2007

Rolindes Balda, Joaquín Fernández, Sara García-Revilla, and Jose M. Fernández Navarro, "Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass," Opt. Express 15, 6750-6761 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Y. Allain, M. Monerie, and H. Poignant, "Tunable cw lasing around 0.82, 1.48, 1.88, and 2.35 ?m in thulium doped fluorozirconate fiber," Electron. Lett. 25, 1660-1662 (1989). [CrossRef]
  2. S. Tanabe, X. Feng, and T. Hanada, "Improved emission of Tm3+-doped glass for a 1.4 ?m amplifier by radiative energy transfer between Tm3+ and Nd3+," Opt. Lett. 25, 817-819 (2000). [CrossRef]
  3. J. Wu, Z. Yao, J. Zong, and S. Jiang, "Highly efficient high-power thulium-doped germanate glass fiber laser," Opt. Lett. 32, 638-640 (2007). [CrossRef] [PubMed]
  4. J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187-203 (1994). [CrossRef]
  5. R. A. H. El-Mallawany, Tellurite Glasses Handbook-Physical Properties and Data, (CRC Boca Raton, FL 2001). [CrossRef]
  6. S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Tellurite glasses for 1.3 ?m optical amplifiers," Opt. Commun. 168, 369-373 (1999). [CrossRef]
  7. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm," IEEE Photon. Technol. Lett. 10, 1244-1246 (1998). [CrossRef]
  8. S. Shen, A. Jha, L. Huang, and P. Joshi, "980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification," Opt. Lett. 30, 1437-1439 (2005). [CrossRef] [PubMed]
  9. A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, "Induction and relaxation of optical second-order nonlinearity in tellurite glasses," J. Appl. Phys. 85, 2046-2051 (1999). [CrossRef]
  10. S. Tanabe, K. Hirao, and N. Soga, "Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+," J. Non-Cryst. Solids 122, 79-82 (1990). [CrossRef]
  11. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 ?m broadband amplification," Opt. Lett. 23, 274-276 (1998). [CrossRef]
  12. A. Mori, "1.58-?m Broad-band erbium-doped tellurite fiber amplifier," J. Lightwave Technol. LT-20, 822-827 (2002). [CrossRef]
  13. R. Balda, J. Fernández, M. A. Arriandiaga, and J. Fernández-Navarro, "Spectroscopy and frequency upconversion in Nd3+ doped TeO2-TiO2-Nb2O5 glass," J. Phys.: Conden. Matter 19, 086223-086234 (2007). [CrossRef]
  14. I. Iparraguirre, J. Azkargorta, J. M. Fernández-Navarro, M. Al-Saleh, J. Fernández, and R. Balda, "Laser action and upconversion of Nd3+ in tellurite bulk glass," J. Non-Cryst. Solids 353, 990-992 (2007). [CrossRef]
  15. S. Kim and T. Yoko, "Nonlinear optical properties of TeO2-based glasses: Mox-TeO2 (M=Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses," J. Am. Ceram. Soc. 78, 1061-1065 (1995). [CrossRef]
  16. H. Lin, G. Meredith, S. Jiang, X. Peng, X. T. Luo, N. Peyghambarian, and E. Y. Pun, "Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass," J. Appl. Phys. 93, 186-191 (2003). [CrossRef]
  17. M. E. Lines, "Oxide glasses for fast photonic switching: A comparative study," J. Appl. Phys. 69, 6876-6884 (1991). [CrossRef]
  18. M. A. Villegas and J. M. Fernández Navarro, "Physical and structural properties of glasses in the TeO2-TiO2-Nb2O5 system," J. Eur. Ceram. Soc. 27, 2715-2723 (2007). [CrossRef]
  19. H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, K. Kubodera, "Nonresonant-Type Third-order Nonlinearity of (PbO,Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation," Jpn. J. Appl. Phys. 31, 3899-3900 (1992). [CrossRef]
  20. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962). [CrossRef]
  21. G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962). [CrossRef]
  22. W. T. Carnall, P. R. Fields, and K. Rajnak, "Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+," J. Chem. Phys. 49, 4412-4423 (1968). [CrossRef]
  23. M. Eyal, R. Reisfeld, A. Schiller, C. Jacoboni, and C. K. Jorgensen, "Energy transfer between manganese (II) and thulium (III) in transition metal fluoride glasses," Chem. Phys. Lett. 140, 595-602 (1987). [CrossRef]
  24. M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967). [CrossRef]
  25. A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses," Phys. Rev. B 41, 5364-5371 (1990). [CrossRef]
  26. M. J. Weber, D. C. Ziegler, and C. A. Angell, "Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses," J. Appl. Phys. 53, 4344-4350 (1982). [CrossRef]
  27. M. Naftaly, S. Shen, and A. Jha, "Tm3+-doped tellurite glass for a broadband amplifier at 1.47 ?m," Appl. Opt. 39, 4979-4984 (2000). [CrossRef]
  28. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, J. Montagne, "Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 ?m," Opt. Mater. 24, 563-577 (2003). [CrossRef]
  29. M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971). [CrossRef]
  30. M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Japan 22, 779-784 (1967). [CrossRef]
  31. A. I. Burshtein, "Hopping mechanism of energy transfer," Sov. Phys. JETP 35, 882-885 (1972).
  32. Y. S. Han, J. Heo and Y. B. Shin, "Cross-relaxation mechanism among Tm3+ ions in Ge30Ga2As6S62 glass," J. Non-Cryst. Solids 316, 302-308 (2003). [CrossRef]
  33. A. Sennaroglu, A. Kurt, and G. Özen, "Effects of cross-relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2-CdCl3 glass," J. Phys. Condens. Matter 16, 2471-2478 (2004). [CrossRef]
  34. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003). [CrossRef]
  35. R. Balda, J. Fernández, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernández-Navarro, "Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses," Opt. Mater. 28, 1247-1252 (2006). [CrossRef]
  36. F. Auzel, "A fundamental self-generated quenching center for lanthanide-doped high-purity solids," J. Lumin. 100, 125-130 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited