OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 6762–6767

Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching

Pavel Ginzburg and Meir Orenstein  »View Author Affiliations


Optics Express, Vol. 15, Issue 11, pp. 6762-6767 (2007)
http://dx.doi.org/10.1364/OE.15.006762


View Full Text Article

Enhanced HTML    Acrobat PDF (1634 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The downscaling of conventional RF transmission lines methodologies to subwavelength plasmonic circuits is discussed and demonstrated for a λ/4 transformer impedance matching. The nano-size transformer, matching between 0.5μm and 50nm wide plasmonic transmission lines, enhances the coupling efficiency by more than 285% compared to the direct (“end fire”) coupling – i.e. harvesting more than 86% of total incident power. The influence of the transverse resonances induced by the metal claddings of the input transmission line on the light harvesting is discussed as well.

© 2007 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 4, 2007
Revised Manuscript: May 14, 2007
Manuscript Accepted: May 14, 2007
Published: May 17, 2007

Citation
Pavel Ginzburg and Meir Orenstein, "Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching," Opt. Express 15, 6762-6767 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6762


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  3. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.: Optoelectron. 145, 391-397 (1998). [CrossRef]
  4. P. Ginzburg, D. Arbel, and M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288-3290 (2006). [CrossRef] [PubMed]
  5. E. Feigenbaum and M. Orenstein, "Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons," Opt. Express 15, 2607-2612 (2007). [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  7. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002). [CrossRef]
  8. G. Veronis and S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Opt. Express 15, 1211-1221 (2007) [CrossRef] [PubMed]
  9. J. Weeber, Y. Lacroute, and A. Dereux, "Optical near-field distributions of surface plasmon waveguide modes," Phys. Rev. B 68, 115401 (2003). [CrossRef]
  10. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  11. E. Feigenbaum, and M. Orenstein, "Plasmonic Coaxial Nano-Cavities and Waveguides," Lasers & Electro-Optics Society, IEEE, 260-261 (2006).
  12. D. M. Pozar, Microwave Engineering, (Wiley, New York, 1998).
  13. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  14. J. R. Whinnery and H. W. Jamieson, Proc. IRE 32, 98 (1944), J. R Whinnery, and H. W Jamieson, "Equivalent Circuits for Discontinuities in Transmission Line," Proc. IRE 32,98-114 (1944). [CrossRef]
  15. J. Chramiec, and M. Kitlinski, "Design of quarter-wave compact impedance transformers using coupled transmission lines," Electron. Lett. 38, 1683-1685 (2002). [CrossRef]
  16. M. Siebold, E. Reiche, H. Uhlmann, "Optimization of nonuniform transmission lines using time-domain reflectometry," Antennas and Propagation Society International Symposium, IEEE 3, 794-797 (2002).
  17. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts," Opt. Express 14, 6400-6413 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited