OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 6774–6783

Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography

Wei-Lun Chang and Pei-Kuen Wei  »View Author Affiliations

Optics Express, Vol. 15, Issue 11, pp. 6774-6783 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (9654 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fabrication and characteristics of close-packed lens arrays with a feature size close to the optical diffraction limit are presented in this study. By controlling the size of the submicron nickel rods and the time for reactive dry etching, the hemispherical lens array with a submicron period is made directly on a borosilicate glass. Finite-difference time-domain calculations and optical near-field measurements show that such a lens array can generate a subwavelength optical spot array near the glass surface. Moreover, the spot array periodically appears in the propagation direction. Using this novel optical property, we propose a photolithographic method for the mass-production of multilayer hexagonal structures with a period of 500nm.

© 2007 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(220.2560) Optical design and fabrication : Propagating methods
(220.3620) Optical design and fabrication : Lens system design
(220.3740) Optical design and fabrication : Lithography

ToC Category:
Optical Design and Fabrication

Original Manuscript: November 16, 2006
Revised Manuscript: December 29, 2006
Manuscript Accepted: January 16, 2007
Published: May 17, 2007

Wei-Lun Chang and Pei-Kuen Wei, "Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography," Opt. Express 15, 6774-6783 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K Takada, H. B. Sun, and S. Kawata, "Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system," Appl. Phys. Lett 80, 312-314 (2002). [CrossRef]
  2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). [CrossRef] [PubMed]
  3. C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000). [CrossRef]
  4. S. Möller and S. R. J. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324.-3327 (2002). [CrossRef]
  5. J. Kim, K. H. Jeong, and L. P. Lee," Artificial ommatidia by self-aligned microlenses and waveguides," Opt. Lett. 30, 5-7 (2005) [CrossRef] [PubMed]
  6. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003). [CrossRef]
  7. H. J. Nam, D. Y. Jung, G. R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363(2006). [CrossRef] [PubMed]
  8. E. Betzig and J. K. Trautman, "Near-field optics: Microscopy, Spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992). [CrossRef] [PubMed]
  9. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A: Pure Appl. Opt. 8, S407-S429 (2006). [CrossRef]
  10. M. Fritze, M. B. Stern, and P. W. Wyatt," Laser-fabricated glass microlens arrays," Opt. Lett. 23, 141-143 (1998). [CrossRef]
  11. M. B. Stern and T. R. Jay, "Dry etching for coherent refractive microlens arrays," Opt. Eng. 33, 3547-3551 (1994). [CrossRef]
  12. L. Li, T. Abe and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003). [CrossRef]
  13. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (Artech House, Boston 2000).
  14. H. F. Talbot, "Facts relating to optical science. No. IV," Philos. Mag. 9, 401-407 (1836).
  15. P. K. Wei, Y. C. Chen, and H. L. Chou, "The diffraction induced near-field optical images in Mesoscale Air-Dielectric Structures," J. Opt. Soc. Am. B 20, 1503-1505(2003). [CrossRef]
  16. S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005). [CrossRef]
  17. K. Kaneko, H. B. Sun, X.M. Duan and S. Kawata, "Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication," Appl. Phys. Lett. 83, 2091-2093 (2003). [CrossRef]
  18. V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett 29, 2061-2063 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited