OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 6798–6808

Heisenberg limited Sagnac interferometry

Aziz Kolkiran and G. S. Agarwal  »View Author Affiliations

Optics Express, Vol. 15, Issue 11, pp. 6798-6808 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (172 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show how the entangled photons produced in parametric down conversion can be used to improve the sensitivity of a Sagnac interferometer. Two-photon and four-photon coincidences increases the sensitivity by a factor of two and four respectively. Our results apply to sources with arbitrary pumping and squeezing parameters.

© 2007 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5790) Instrumentation, measurement, and metrology : Sagnac effect
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 29, 2007
Revised Manuscript: April 16, 2007
Manuscript Accepted: May 12, 2007
Published: May 18, 2007

Aziz Kolkiran and G. S. Agarwal, "Heisenberg limited Sagnac interferometry," Opt. Express 15, 6798-6808 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Sagnac, "L’ether lumineux demontre par l’effect du vent relatif d’ether dans un interferometre en rotation uniforme," C. R. Acad. Sci. 157, 708-710 (1913).
  2. G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, "Single-photon Sagnac interferometer," J. Phys. B 39, 1011-1016 (2006). [CrossRef]
  3. P. Grangier, G. Roger, and A. Aspect, "Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences," Europhys. Lett. 1, 173 (1986). [CrossRef]
  4. P. Hariharan, N. Brown, and B. C. Sanders, "Interference of independent laser-beams at the single-photon level," J. Mod. Opt. 40, 113-122 (1993). [CrossRef]
  5. A. Zeilinger, "Experiment and the foundations of quantum physics," Rev. Mod. Phys. 71, S288-S297 (1999). [CrossRef]
  6. M. J. Holland and K. Burnett, "Interferometric detection of optical-phase shifts at the heisenberg limit," Phys. Rev. Lett. 71, 1355-1358 (1993). [CrossRef] [PubMed]
  7. J. P. Dowling, "Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope," Phys. Rev. A 57, 4736-4746 (1998). [CrossRef]
  8. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, " Role of entanglement in two-photon imaging," Phys. Rev. Lett. 87, 123602 (2001). [CrossRef] [PubMed]
  9. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of 2-photon quantum entanglement," Phys. Rev. A 52, R3429-R3432 (1995). [CrossRef] [PubMed]
  10. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733-2736 (2000). [CrossRef] [PubMed]
  11. E. Yablonovitch and R. B. Vrijen, "Optical projection lithography at half the Rayleigh resolution limit by twophoton exposure," Opt. Eng. 38, 334-338 (1999). [CrossRef]
  12. D. V. Korobkin and E. Yablonovitch, "Two-fold spatial resolution enhancement by two-photon exposure of photographic film," Opt. Eng. 41, 1729-1732 (2002). [CrossRef]
  13. G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, "Comment on "Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 86, 1389-1389 (2001). [CrossRef] [PubMed]
  14. G. Bjork, L. L. Sanchez-Soto, and J. Soderholm, "Entangled-state lithography: Tailoring any pattern with a single state," Phys. Rev. Lett. 86, 4516-4519 (2001). [CrossRef] [PubMed]
  15. M. D’Angelo, M. V. Chekhova, and Y. Shih, "Two-photon diffraction and quantum lithography," Phys. Rev. Lett. 87, 013602 (2001). [CrossRef] [PubMed]
  16. G. S. Agarwal and M. O. Scully, "Magneto-optical spectroscopy with entangled photons," Opt. Lett. 28, 462-464 (2003). [CrossRef] [PubMed]
  17. Z. Y. Ou, L. J. Wang, X. Y. Zou, and L. Mandel, "Evidence for phase memory in 2-photon down conversion through entanglement with the vacuum," Phys. Rev. A 41, 566-568 (1990). [CrossRef] [PubMed]
  18. J. G. Rarity, P. R. Tapster, E. Jakeman, T. Larchuk, R. A. Campos, M. C. Teich, and B. E. A. Saleh, "2-photon interference in a mach-zehnder interferometer," Phys. Rev. Lett. 65, 1348-1351 (1990). [CrossRef] [PubMed]
  19. Z. Y. Ou, X. Y.  Zou, L. J. Wang, and L. Mandel, "Experiment on nonclassical 4th-order interference," Phys. Rev. A 42, 2957-2965 (1990). [CrossRef] [PubMed]
  20. K. Edamatsu, R. Shimizu, and T. Itoh, "Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion," Phys. Rev. Lett. 89, 213601 (2002). [CrossRef] [PubMed]
  21. M. Eibl, S. Gaertner,M. Bourennane, C. Kurtsiefer,M. Zukowski, and H. Weinfurter, "Experimental observation of four-photon entanglement from parametric down-conversion," Phys. Rev. Lett. 90, 200403 (2003). [CrossRef] [PubMed]
  22. P. Walther, J. W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature (London) 429, 158-161 (2004). [CrossRef]
  23. J. Jacobson, G. Bjork, I. Chuang, and Y. Yamomoto, "Photonic de broglie waves," Phys. Rev. Lett. 74, 4835- 4838 (1995). [CrossRef] [PubMed]
  24. O. Steuernagel, "de Broglie wavelength reduction for multiphoton wave packet," Phys. Rev. A 65, 033820 (2002). [CrossRef]
  25. W. Schleich and M. O. Scully, 1984 modern trends in Atomic and Molecular Physics, Proceedings of Les Houches Summer School, Session 38, R. Stora and G. Grynberg, eds., North Holland, Amsterdam [PubMed]
  26. E. J. Post, "Sagnac effect," Rev. Mod. Phys. 39, 475 (1967). [CrossRef]
  27. F. Jacobs and R. Zamoni, "Laser ring gyro of arbitrary shape and rotation axis," Am. J. Phys. 50, 659-660 (1982). [CrossRef]
  28. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  29. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, (Cambridge University Press, Cambridge, 2000).
  30. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wooters, "Mixed-state entanglement and quantum error correction," Phys. Rev. A 54, 3824-3851 (1996). [CrossRef] [PubMed]
  31. M. Caminati, F. De Martini, R. Perris, F. Sciarrino, and V. Secondi, "Nonseparable Werner states in spontaneous parametric down-conversion," Phys. Rev. A 73, 032312 (2006). [CrossRef]
  32. A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier,"Quantum homodyne tomography of a two-photon fock state," Phys. Rev. Lett. 96, 213601 (2006). [CrossRef] [PubMed]
  33. G. S. Agarwal, K. W. Chan, R. W. Boyd, H. Cable, and J. P. Dowling "Quantum states of light produced by a high-gain optical parametric amplifier for use in quantum lithography," J. Opt. Soc. Am. B 24, 270 (2007). [CrossRef]
  34. H. J. Chang, H. Shin, M. N. O’Sullivan-Hale, and R. W. Boyd, "Implementation of subRayleigh lithography using an N-photon absorber," J. Mod. Opt. 53, 2271-2277 (2006). [CrossRef]
  35. H. Lefevre, The Fiber-Optic Gyroscope, (Artech House, Boston, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited