OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 6914–6925

Passive and active optical bit-pattern recognition structures for multiwavelength optical packet switching networks

Muhsen Aljada and Kamal Alameh  »View Author Affiliations

Optics Express, Vol. 15, Issue 11, pp. 6914-6925 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (538 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Next generation High-Speed optical packet switching networks require components capable of recognising the optical header to enable on-the-fly accurate switching of incoming data packets to their destinations. This paper experimentally demonstrates a comparison between two different optical header recognition structures; A passive structure based on the use of Fiber Bragg Gratings (FBGs), whereas the active structure employs Opto-VLSI processors that synthesise dynamic wavelength profile through digital phase holograms. The structures are experimentally demonstrated at 10Gbps. Performance comparison between the two structures is also discussed. These optical header recognition structures are attractive for multiwavelength optical network and applications.

© 2007 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.4550) Fourier optics and signal processing : Correlators
(070.5010) Fourier optics and signal processing : Pattern recognition
(090.1970) Holography : Diffractive optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 27, 2007
Revised Manuscript: May 17, 2007
Manuscript Accepted: May 17, 2007
Published: May 21, 2007

Muhsen Aljada and Kamal Alameh, "Passive and active optical bit-pattern recognition structures for multiwavelength optical packet switching networks," Opt. Express 15, 6914-6925 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. McGeehan, M. C. Hauer, A. B. Sahin, and A. E. Willner, "Multiwavelength-channel header recognition for reconfigurable WDM networks using optical correlators based on sampled fiber Bragg gratings," IEEE Photon. Technol. Lett. 15, 1464 - 1466 (2003). [CrossRef]
  2. M. C. Hauer, J. E. McGeehan, S. Kumar, J. D. Touch, J. Bannister, E. R. Lyons, C. H. Lin, A. A Au, H.P. Lee, D. S. Starodubov, and A. E. Willner, "Optically assisted Internet routing using arrays of novel dynamically reconfigurable FBG-based correlators," J. Lightwave Technol. 21, 2765-2778 (2003). [CrossRef]
  3. Z. Zhu, V. J. Hernandez, M. Y. Jeon, J. Cao, Z. Pan, and S. J. B. Yoo, "RF photonics signal processing in subcarrier multiplexed optical-label switching communication systems," J. Lightwave Technol. 21, 3155 - 3166 (2003). [CrossRef]
  4. C. Bintjas, N. Pleros, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical packet address and payload separation," IEEE Photon. Technol. Lett. 14,1728 - 1730 (2002). [CrossRef]
  5. A. Okada, "All-optical packet routing in AWG-based wavelength routing networks using an out-of-band optical label," in Proceedings of OFC’02, (Washington DC, 2002), pp. 213 - 215.
  6. M. Cardakli, A. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routing using time-to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett. 12, 552-554 (2000). [CrossRef]
  7. N. Wada, H. Harai, W. Chujo, and F. Kubota, "Photonic packet routing based on multi-wavelength label switching using fiber Bragg gratings," in Proceedings of ECOC, (Munich 2000).
  8. N. Wada, H. Harai, W. Chujo, and F. Kubota, "Multi-hop variable length photonic packet routing based on multi-wavelength label switching waveband routing, and label swapping," in Proceedings of OFC (2002), pp. 216-217.
  9. H. L. Lee and D. Simeonidou, "Novel optical packet header decoding via cross-correlation," in Proceedings of Photonics Switching (2001), pp. 66-67.
  10. K. Chan, F. Tong, C. K Chan, L. K. Chen, and W. Hung, "An all-optical packet header recognition scheme for self-routing packet networks," in Proceedings of OFC2002, (2002), pp. 284-285.
  11. S. Shao and M. Kao, "WDM coding for high capacity lightwave systems," J. Lightwave Technol. 12, 137-148 (1994). [CrossRef]
  12. D. Zhou, B. Wang, R. Runser, I. Glesk, and P. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over single mode fiber," IEEE Photon. Technol. Lett. 13, 382-384, (2001). [CrossRef]
  13. C. Skoufis, S. Sygletos, N. Leligou, C. Matrakidis, I. Pountourakis, and A. Stavdas, "Data-centric networking using multiwavelength headers/labels in packet-over-WDM networks: A comparative study," J. Lightwave Technol. 21, 2110 - 2122 (2003). [CrossRef]
  14. A. Stavdas, C. Skoufis, I. Angelopoulous, G. Stassinopolous, and I. Pountourakis," on multi-? packet labelling for metropolitan and wide-area optical networks," Photonic Network Commun. 3, 131-145 (2001). [CrossRef]
  15. M. Aljada, K. E. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto VLSI processors," Opt. Express 14, 6823-6836 (2006). [CrossRef] [PubMed]
  16. M. C. Parker and S. D. Walker, "Arrayed waveguide gratings, fiber bragg gratings, and photonic crystal: an isomorphic Fourier transform light propagation analysis," IEEE J. Sel. Top. Quantum Electron. 8, 1158-1167 (2002). [CrossRef]
  17. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg Gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997). [CrossRef]
  18. S. Ahderom, M. Raisi, K. E. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using Opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003). [CrossRef]
  19. Z. Wang, R. Zheng, K.E. Alameh, R. Robertson, U. Mueller, and L. Bloom, "Opto-VLSI-based dynamic optical splitter," Electron. Lett.  40, 1445 - 1446 (2004). [CrossRef]
  20. M Aljada, K. E. Alameh, and K. Al-Begain, "Opto-VLSI-based correlator architecture for multi-wavelength optical header recognition," J. Lightwave Technol. 24, 2779-2785 (2006). [CrossRef]
  21. R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, "An Opto-VLSI reconfigurable broad-band optical splitter," IEEE Photon. Technol. Lett. 17, 339 - 341 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited