OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 6947–6954

Experimental studies of far-field superlens for sub-diffractional optical imaging

Zhaowei Liu, Stéphane Durant, Hyesog Lee, Yuri Pikus, Yi Xiong, Cheng Sun, and Xiang Zhang  »View Author Affiliations


Optics Express, Vol. 15, Issue 11, pp. 6947-6954 (2007)
http://dx.doi.org/10.1364/OE.15.006947


View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Contrary to the conventional near-field superlensing, subwavelength superlens imaging is experimentally demonstrated in the far-field. The key element is termed as a Far-field SuperLens (FSL) which consists of a conventional superlens and a nanoscale coupler. The evanescent fields from the object are enhanced and then converted into propagating fields by the FSL. By only measuring the propagating field in the far-field, the object image can be reconstructed with subwavelength resolution. As an example of this concept, we design and fabricate a silver structured one dimensional FSL. Experimental results show that feature resolution of better than 50nm is possible using current FSL design. © 2007

© 2007 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(240.6680) Optics at surfaces : Surface plasmons
(350.7420) Other areas of optics : Waves

ToC Category:
Imaging Systems

History
Original Manuscript: March 6, 2007
Revised Manuscript: April 18, 2007
Manuscript Accepted: April 21, 2007
Published: May 22, 2007

Citation
Zhaowei Liu, Stéphane Durant, Hyesog Lee, Yuri Pikus, Yi Xiong, Cheng Sun, and Xiang Zhang, "Experimental studies of far-field superlens for sub-diffractional optical imaging," Opt. Express 15, 6947-6954 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6947


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, and E. Wolf, Principles of Optics (Pergamon Press, Fourth edition 1970).
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. K. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991). [CrossRef] [PubMed]
  3. D. Courjon, Near-field microscopy and near-field optics (London, Imperial College Press, 2003).
  4. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated emission deletion microscopy," Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  5. S. W. Hell, "Toward fluorescence nanoscopy," Nat. Biotechnol. 21, 1347-1355 (2003). [CrossRef] [PubMed]
  6. R. Heintzmann, T. M. Jovin, and C. Cremer, "Saturated patterned excitation microscopy-a concept for optical resolution improvement," J. Opt. Soc. Am. A 19, 1599-1609 (2002). [CrossRef]
  7. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," PNAS 102, 13081-13086 (2005). [CrossRef] [PubMed]
  8. M. J. Rust, M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Method 3, 793-795 (2006). [CrossRef]
  9. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006). [CrossRef] [PubMed]
  10. J. Gelles, B. J. Schnapp, and M. P. Sheetz, "Tracking kinesin-driven movements with nanometer-scale precision," Nature 331, 450-453 (1988). [CrossRef] [PubMed]
  11. A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003). [CrossRef] [PubMed]
  12. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  13. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  14. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-Handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  15. A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004). [CrossRef] [PubMed]
  16. W. Cai, D. A. Genov, and V. M. Shalaev, "A superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005). [CrossRef]
  17. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003). [CrossRef]
  18. V. P. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals - imaging by flat lens using negative refraction," Nature 426, 404-404 (2003). [CrossRef] [PubMed]
  19. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopou, C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  20. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  21. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005). [CrossRef]
  22. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006). [CrossRef] [PubMed]
  23. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005). [CrossRef] [PubMed]
  24. S. Durant, Z. Liu, N. Fang, and X. Zhang, www.arxiv.org, physics/0601163, 2006; S. Durant, Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006). [CrossRef]
  25. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, X., "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007). [CrossRef] [PubMed]
  26. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  27. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006). [CrossRef]
  28. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limitted object," Science 315, 1686 (2007). [CrossRef] [PubMed]
  29. Z. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang, "Near-field Moire effect mediated by surface plasmon polariton excitation," Opt. Lett. 32, 629-631 (2007). [CrossRef] [PubMed]
  30. M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc.-Oxf 198, 82-87 (2000). [CrossRef]
  31. J. T. Frohn, H. F. Knapp, and A. Stemmer, "True optical resolution beyond the Rayleigh limit achieved by standing wave illumination," PNAS 97, 7232-7236 (2000). [CrossRef] [PubMed]
  32. V. Krishnamurthi, B. Bailey, and F. Lanni, "Image processing in 3-D standing-wave fluorescence microscopy," Proc. SPIE  2655, 18 (1996).
  33. M. A. Grimm and A. W. Lohmann, "Superresolution image for one-dimensional objects," J. Opt. Soc. Am. 56, 1151-1156 (1966). [CrossRef]
  34. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited