OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 7019–7031

Spectral variability of the particulate backscattering ratio

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau  »View Author Affiliations

Optics Express, Vol. 15, Issue 11, pp. 7019-7031 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral dependency of the particulate backscattering ratio is relevant in the fields of ocean color inversion, light field modeling, and inferring particle properties from optical measurements. Aside from theoretical predictions for spherical, homogeneous particles, we have very limited knowledge of the actual in situ spectral variability of the particulate backscattering ratio. This work presents results from five research cruises that were conducted over a three-year period. Water column profiles of physical and optical properties were conducted across diverse aquatic environments that offered a wide range of particle populations. The main objective of this research was to examine the behavior of the spectral particulate backscattering ratio in situ, both in terms of its absolute magnitude and its variability across visible wavelengths, using over nine thousand 1-meter binned data points for each of five wavelengths of the spectral particulate backscattering ratio. Our analysis reveals no spectral dependence of the particulate backscattering ratio within our measurement certainty, and a geometric mean value of 0.013 for this dataset. This is lower than the commonly used value of 0.0183 from Petzold’s integrated volume scattering data. Within the first optical depth of the water column, the mean particulate backscattering ratio was 0.010.

© 2007 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.1350) Scattering : Backscattering
(290.5850) Scattering : Scattering, particles

ToC Category:
Atmospheric and ocean optics

Original Manuscript: February 16, 2007
Revised Manuscript: May 10, 2007
Manuscript Accepted: May 16, 2007
Published: May 24, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, "Spectral variability of the particulate backscattering ratio," Opt. Express 15, 7019-7031 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. D. Mobley, L. K. Sundman, and E. Boss, "Phase function effects on oceanic light fields," Appl. Opt. 41, 1035-1050 (2002). [CrossRef] [PubMed]
  2. H. R. Gordon, and A. Morel, "Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review," R. T. Barber, C. N. K. Mooers, M. J. Bowman, and B. Zeitzschel, eds. (Springer-Verlag, New York, 1983).
  3. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004). [CrossRef]
  4. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clarks, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93, 10,909-10,924 (1988). [CrossRef]
  5. A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters)," J. Geophys. Res. 93, 10,749 - 10,768 (1988). [CrossRef]
  6. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14,129-14,142 (2001). [CrossRef]
  7. E. Boss, W. S. Pegau, M. Lee, M. S. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, "The particulate backscattering ratio at LEO-15 and its use to study particle composition and distribution," J. Geophys. Res. 109, C0101410.1029/2002JC001514 (2004). [CrossRef]
  8. E. Aas, "Refractive index of phytoplankton derived from its metabolite composition," J. Plankt. Res. 18, 2223-2249 (1996). [CrossRef]
  9. K. L. Carder, P. R. Betzer, and D. W. Eggimann, "Physical, chemical, and optical measures of suspended particle concentrations: their intercomparison and application to the West African shelf," in Suspended Solids in Water, R. J. Gibbs, ed., (Plenum, New York, 1974) pp. 173- 193.
  10. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, "Use of optical scattering to discriminate particle types in coastal waters," Appl. Opt. 44, 1667-1680 (2005). [CrossRef] [PubMed]
  11. O. Ulloa, S. Sathyendranath, and T. Platt, "Effect of the particle size-distribution on the backscattering ratio in seawater," Appl. Opt. 33, 7070-7077 (1994). [CrossRef] [PubMed]
  12. J. B. Macdonald, M. S. Twardowski, W. S. Pegau, A. H. Barnard, E. Boss, and J. R. V. Zaneveld. "Characterization of spectral backscattering in the Gulf of California," in EOS Trans. AGU,80, Ocean Sci. Mett. Suppl. (2000).
  13. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, "Optical properties of the particles in the Crimea coastal waters (Black Sea),: J. Geophys. Res. 110, doi:10.1029/2005JC003008 (2005). [CrossRef]
  14. D. McKee and A. Cunningham, "Evidence for wavelength dependence of the scattering phase function and its implication for modeling radiance transfer in shelf seas," Appl. Opt. 44, 126-135 (2005). [PubMed]
  15. E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau. "Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake National Park, OR," Hydrobiologia,  574, 149-159 (2007). [CrossRef]
  16. A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, "Global relationships of the inherent optical properties of the oceans," J. Geophys. Res. 103, 24,955 - 24,968, (1998). [CrossRef]
  17. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, "Absorption and attenuation of visible and near-infrared light in the water: Dependence on temperature and salinity," Appl. Opt. 36, 6035-6046 (1997). [CrossRef] [PubMed]
  18. J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, "Scattering error correction of reflecting tube absorption meter," Proc. SPIE 2258, 44-55 (1994). [CrossRef]
  19. R. F. Davis, C. C. Moore, J. R. V. Zaneveld, and J. M. Napp, "Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments," J. Geophys. Res.,  102, 5851-5855 (1997). [CrossRef]
  20. H. M. Sosik and B. G. Mitchell, "Light absorption by phytoplankton, photosynthetic pigments and detritus in the California Current System," Deep Sea-Res. 42, 1717-1748 (1995). [CrossRef]
  21. R. A. Maffione and D. R. Dana, "Instruments and methods for measuring the backward-scattering coefficient of ocean waters," Appl. Opt. 36, 6057-6067 (1997). [CrossRef] [PubMed]
  22. E. Boss and W. Scott Pegau, "The relationship of light scattering at an angle in the backward direction to the backscattering coefficient," Appl. Opt. 40, 5503-5507 (2001). [CrossRef]
  23. T. Oishi, "Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120 degrees," Appl. Opt. 29, 4658-4665 (1990). [CrossRef] [PubMed]
  24. M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, "Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles," J. Geophys. Res. 111, doi:10.1029/2005JC003230 (2006). [CrossRef]
  25. W. S. Pegau, J. R. V. Zaneveld, and K. J. Voss, "Toward closure of the inherent optical properties of natural waters," J. Geophys. Res. 100, 13,193-13,199 (1995). [CrossRef]
  26. T. J. Petzold, "Volume scattering functions for selected ocean waters," SIO Ref. 72-78, (Scripps Institution of Oceanography, 1972).
  27. J. W. Campbell, "The lognormal distribution as a model for bio-optical variability in the sea," J. Geophys. Res. 100, 13237-13254 (1995). [CrossRef]
  28. R. R. Sokal and F. J. Rohlf, Biometry, (W.H. Freeman and Company, New York, 1995).
  29. E. T. Peltzer, "Matlab® shell-scripts for linear regression analysis," http://www.mbari.org/staff/etp3/regressindex.htm (9/18/2006).
  30. E. Laws, Mathematical Methods for Oceanographers (John Wiley and Sons, New York, 1997).
  31. Y.-H. Ahn, A. Bricaud, and A. Morel, "Light backscattering efficiency and related properties of some phytoplankters," Deep-Sea Res.Part A 39, 1835-1855 (1992). [CrossRef]
  32. A. Bricaud, A. Morel, and L. Prieur, "Optical efficiency factors of some phytoplankters," Limnol. Oceanogr. 28, 816-832 (1983). [CrossRef]
  33. A. Morel and S. Maritorena, Bio-optical properties of oceanic waters: A reappraisal.Journal of Geophysical research,  106, 7763-7780 (2001).
  34. H. R. Gordon, "Backscattering of light from disklike particles: is fine-scale structure or gross morphology more important?," Appl. Opt. 45, 7166-7173 (2006). [CrossRef] [PubMed]
  35. J. C. Kitchen and J. R. V. Zaneveld, "A three-layered sphere model of the optical properties of phytoplankton," Limnol. Oceanogr. 37, 1680-1690 (1992). [CrossRef]
  36. A. Bricaud, C. Roesler, and J. R. V. Zaneveld, "In situ methods for measuring the inherent optical properties of ocean waters," Limnol. Oceanogr. 40, 393-410 (1995). [CrossRef]
  37. C. S. Roesler and E. Boss, "A novel ocean color inversion model: retrieval of beam attenuation and particle size distribution," Geophys. Res. Lett. 30, 10.1029/2002GL016366 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited