OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 7047–7057

An ion-implanted InP receiver for polarization resolved terahertz spectroscopy

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H.H. Tan, C. Jagadish, and M. B. Johnston  »View Author Affiliations

Optics Express, Vol. 15, Issue 11, pp. 7047-7057 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (694 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the construction, optical alignment and performance of a receiver which is capable of recording the full polarization state of coherent terahertz radiation. The photoconductive detector was fabricated on InP which had been implanted with Fe+ ions. The device operated successfully when it was gated with near infrared femtosecond pulses from either a Ti:sapphire laser oscillator or a 1 kHz regenerative laser amplifier. When illuminated with terahertz radiation from a typical photoconductive source, the optimized device had a signal to noise figure of 100:1 with a usable spectral bandwidth of up to 4 THz. The device was shown to be very sensitive to terahertz polarization, being able to resolve changes in polarization of 0.34 degrees. Additionally, we have demonstrated the usefulness of this device for (i) polarization sensitive terahertz spectroscopy, by measuring the birefringence of quartz and (ii) terahertz emission experiments, by measuring the polarization dependence of radiation generated by optical rectification in (110)-ZnTe.

© 2007 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(300.6270) Spectroscopy : Spectroscopy, far infrared
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Ultrafast Optics

Original Manuscript: April 12, 2007
Revised Manuscript: May 7, 2007
Manuscript Accepted: May 21, 2007
Published: May 24, 2007

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and Michael B. Johnston, "An ion-implanted InP receiver for polarization resolved terahertz spectroscopy," Opt. Express 15, 7047-7057 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. A. Schmuttenmaer, "Exploring dynamics in the far-infrared with terahertz spectroscopy," Chem. Rev. 104,1759-1779 (2004). [CrossRef] [PubMed]
  2. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, "How many-particle interactions develop after ultrafast excitation of an electron-hole plasma," Nature 414,286-289 (2001). [CrossRef] [PubMed]
  3. J. Lloyd-Hughes, T. Richards, H. Sirringhaus, E. Castro-Camus, L. M. Herz, and M. B. Johnston, "Charge trapping in polymer transistors probed by terahertz spectroscopy and scanning probe potentiometry," Appl. Phys. Lett. 89,112101 (2006). [CrossRef]
  4. F. Gao, J. F. Whitaker, Y. Liu, C. Uher, C. E. Platt, and M. V. Klein, "Terahertz transmission of a Ba1?xKxBiO3 film probed by coherent time-domain spectroscopy," Phys. Rev. B 52,3607-3613 (1995). [CrossRef]
  5. M. B. Johnston, L. M. Herz, A. Khan, A. K¨ohler, A. G. Davies, and E. H. Linfield, "Low-energy vibrational modes in phenylene oligomers studied by THz time domain spectroscopy," Chem. Phys. Lett. 377,256-262 (2003). [CrossRef]
  6. Y. Q. Chen, H. B. Liu, Y. Q. Deng, D. Schauki, M. J. Fitch, R. Osiander, C. Dodson, J. B. Spicer, M. Shur, and X. C. Zhang, "THz spectroscopic investigation of 2,4-dinitrotoluene," Chem. Phys. Lett. 400,357-361 (2004). [CrossRef]
  7. S. Kono, M. Tani, and K. Sakai, "Ultrabroadband photoconductive detection: Comparison with free-space electro-optic sampling," Appl. Phys. Lett. 79,898-900 (2001). [CrossRef]
  8. D. H. Auston and M. C. Nuss, "Electrooptic generation and detection of femtosecond electrical transients," IEEE J. Quantum Electron. 24,184-197 (1988). [CrossRef]
  9. P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24,255-260 (1988). [CrossRef]
  10. Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85,164-166 (2004). [CrossRef]
  11. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56?m femtosecond optical pulses," Appl. Phys. Lett. 86,163504 (2005). [CrossRef]
  12. M. Tani, K. Sakai, and H. Mimura, "Ultrafast photoconductive detectors based on semi-insulating GaAs and InP," Jpn. J. Appl. Phys. Part 2 36,L1175-L1178 (1997). [CrossRef]
  13. J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, "Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs," Appl. Phys. Lett. 89,232102 (2006). [CrossRef]
  14. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, "Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches," Phys. Rev. B 71,195301 (2005). [CrossRef]
  15. J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, "Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches," Solid State Commun. 136,595-600 (2005). [CrossRef]
  16. A. Hussain and S. R. Andrews, "Dynamic range of ultrabroadband terahertz detection using GaAs photoconductors," Appl. Phys. Lett. 88,143514 (2006). [CrossRef]
  17. J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices," Appl. Phys. Lett. 88,251119 (2006). [CrossRef]
  18. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, "Polarizationsensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86,254102 (2005). [CrossRef]
  19. F. G. Sun, G. A. Wagoner, and X. C. Zhang, "Measurement of free-space terahertz pulses via long-lifetime photoconductors," Appl. Phys. Lett. 67,1656-1658 (1995). [CrossRef]
  20. T. A. Liu, M. Tani, M. Nakajima, M. Hangyo, K. Sakai, S. Nakashima, and C. L. Pan, "Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas," Opt. Express 12,2954-2959 (2004). [CrossRef] [PubMed]
  21. T. A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. L. Pan, "Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs," Appl. Phys. Lett. 83,1322-1324 (2003). [CrossRef]
  22. J. B. Johnson, "Thermal Agitation of Electricity in Conductors," Phys. Rev. 32,97 (1928). [CrossRef]
  23. H. Nyquist, "Thermal Agitation of Electric Charge in Conductors," Phys. Rev. 32,110-113 (1928). [CrossRef]
  24. R. Sarpeshkar, T. Delbruck, and C. A. Mead, "White-noise in mos-transistors and resistors," IEEE Circuit Devices Mag. 9,23-29 (1993). [CrossRef]
  25. F. N. Hooge, "1/f noise sources," IEEE Trans. Electron Devices 41,1926-1935 (1994). [CrossRef]
  26. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7,2006-2015 (1990). [CrossRef]
  27. E. Castro-Camus, D.Phil thesis, University of Oxford, 2006.
  28. G. Giraud, J. Karolin, and K. Wynne, "Low-frequency modes of peptides and globular proteins in solution observed by ultrafast OHD-RIKES Spectroscopy," Biophys. J. 85,1903-1913 (2003). [CrossRef] [PubMed]
  29. A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, "THz time domain spectroscopy of biomolecular conformational modes," Phys. Med. Biol. 47,3797-3805 (2002). [CrossRef] [PubMed]
  30. J. Xu, K. W. Plaxco, and S. J. Allen, "Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy," Protein Sci. 15,1175-1181 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited