OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 7083–7094

Highly efficient fluorescence of a fluorescing nanoparticle with a silver shell

Xue-Wen Chen, Wallace C. H. Choy, Sailing He, and P. C. Chui  »View Author Affiliations


Optics Express, Vol. 15, Issue 11, pp. 7083-7094 (2007)
http://dx.doi.org/10.1364/OE.15.007083


View Full Text Article

Enhanced HTML    Acrobat PDF (784 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spontaneous emission (SE) rate and the fluorescence efficiency of a bare fluorescing nanoparticle and the nanoparticle with a silver nanoshell are analyzed rigorously by using a classical electromagnetic approach with the consideration of the nonlocal effect of the silver nano-shell. The dependences of the SE rate and the fluorescence efficiency on the core-shell structure are carefully studied and the physical interpretations of the results are addressed. The results show that the SE rate of a bare nanoparticle is much slower than that in the infinite medium by almost an order of magnitude and consequently the fluorescence efficiency is usually low. However, by encapsulating the nanoparticle with a silver shell, highly efficient fluorescence can be achieved as a result of a large Purcell enhancement and high out-coupling efficiency for a well-designed core-shell structure. We also show that a higher SE rate may not offer a larger fluorescence efficiency since the fluorescence efficiency not only depends on the internal quantum yield but also the out-coupling efficiency.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 11, 2007
Revised Manuscript: May 18, 2007
Manuscript Accepted: May 18, 2007
Published: May 24, 2007

Citation
Xue-Wen Chen, Wallace C. Choy, Sailing He, and P. C. Chui, "Highly efficient fluorescence of a fluorescing nanoparticle with a silver shell," Opt. Express 15, 7083-7094 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-7083


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. N. Prasad, Introduction to Biophotonics, (John Wiley & Sons, New York, 2003) [CrossRef]
  2. F. Wang, W. Tan, Y. Zhang, X. Fan and M. Wang, "Luminescent nanomaterials for biological labeling," Nanotechnology 17, R1 (2006) [CrossRef]
  3. R. Y. Tsien, "The green fluorescent protein," Annu. Rev. Biochem. 67, 509-544 (1998). [CrossRef] [PubMed]
  4. A. Burns, H. Ow and U. Wiesner, "Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle" architectures for nanobiotechnology," Chem. Soc. Rev. 35, 1028 (2006). [CrossRef] [PubMed]
  5. Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T.I. Yuk, "Synthesis of wurtzite ZnSe nanorings by thermal evaporation," Appl. Phys. Lett 88, 183110 (2006). [CrossRef]
  6. J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, "Size series of small indium. arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging," J. Am. Chem. Soc. 128, 2526 (2006). [CrossRef] [PubMed]
  7. L. P. Balet, S. A. Ivanov, A. Piryantinski, M. Achermann, and V. I. Klimov, "Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes," Nano. Lett. 4, 1485 (2004). [CrossRef]
  8. C. Radloff and N. J. Halas, "Plasmonic Response of Concentric Nanoshells," Nano. Lett. 4, 1323 (2004). [CrossRef]
  9. S. R. Sershen, S. L. Westcott, J. L. West and N. J. Halas, "An opto-mechanical nanoshell-polymer composite," Appl. Phys. B-Lasers and Optics 73, 379 (2001). [CrossRef]
  10. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243 (1998). [CrossRef]
  11. C. Graf and A. van Blaaderen, "Metallodielectric colloidal core-shell particles for photonic applications," Langmuir 18, 524 (2002). [CrossRef]
  12. M. A. Hines and P. Guyot-Sionest, "Synthesis and characterization of strong luminescing ZnS-capped CdSe nanocrystals," J. Phys. Chem. 100, 468 (1996). [CrossRef]
  13. S. Haubold, M. Haase, A. Kornowski and H. Weller, "Strongly luminescent InP/ZnS core-shell nanoparticles," Chemphyschem 2, 331 (2001). [CrossRef]
  14. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller and H. Weller, "Thiol-Capping of CdTe nanocrystals:an alternative to organometallic synthetic routes," J. Phys. Chem. B 106, 7177 (2002). [CrossRef]
  15. J. R. Lakowicz, "Radiative Decay Engineering: Biophysical and Biomedical Applications," Anal.Biochem. 298, 1 (2001). [CrossRef] [PubMed]
  16. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  17. W. Lukosz, ‘‘Theory of optical-environment-dependent spontaneous emission rates for emitters in thin layers,’’Phys. Rev. B 22, 3030 (1980). [CrossRef]
  18. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601(2004). [CrossRef] [PubMed]
  19. A. Moroz, "Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell," Chem. Phys. 317, 1(2005). [CrossRef]
  20. J. Enderlein, "Theoretical study of single molecule fluorescence in a metallic nanocavity,"Appl. Phys. Lett. 80,315 (2002). [CrossRef]
  21. X. W. Chen, W. C. H. Choy, S. He and P. C. Chui, "Accurate analysis and optimal design of top-emitting organic light emitting devices," J. Appl. Phys. (in press). [PubMed]
  22. A. R. Melnyk and M. J. Harrison,"Theory of optical excitation of plasmons in metals," Phys. Rev. B 2, 835 (1970). [CrossRef]
  23. P. T. Leung, "Decay of molecules at spherical surfaces: nonlocal effects," Phys. Rev. B 42, 7622 (1990). [CrossRef]
  24. A. Pack, M. Hietschold, and R. Wannemacher, "Failure of local Mie theory: optical spectra of colloidal aggregates," Opt. Commun. 194, 277 (2001). [CrossRef]
  25. R. K. Lee, Y. Xu, and A. Yariv, "Modified spontaneous emission from a two dimensional photonic bandgap crystal slab, " J. Opt. Soc. Am. B 17, 1438 (2000). [CrossRef]
  26. H. Chew, "Radiation and lifetime of atoms inside dielectric particles," Phys. Rev. A 38, 3410 (1988). [CrossRef] [PubMed]
  27. A. Moroz, "A recursive transfer-matrix solution for a dipole radiating inside and outside a stratified sphere," Anna. Phys. 315, 352 (2005). [CrossRef]
  28. K. Neyts, "Simulation of light emission from thin-film microcavities," J. Opt. Soc. Am. A 15, 962 (1998). [CrossRef]
  29. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995), Chap. 3.
  30. L. Kuipers and R. Timman, Handbook of Mathematics (Pergamon Press, 1969).
  31. J. Enderlein, "Response to comments on "theoretical study of single molecule fluorescence in a metallic nanocavity,"Appl. Phys. Lett. 87, 066102 (2005). [CrossRef]
  32. E. D, Palik, Handbook of Optical Constants of Solids (Academic press, Boston, 1985).
  33. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House INC,Norwood, 2000), 2nd ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited