OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7095–7102

Tuning the far-field superlens: from UV to visible

Yi Xiong, Zhaowei Liu, Stéphane Durant, Hyesog Lee, Cheng Sun, and Xiang Zhang  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7095-7102 (2007)
http://dx.doi.org/10.1364/OE.15.007095


View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A far-field optical superlens, which is able to form sub-diffraction-limited images in the far field at UV wavelength, was recently demonstrated. In current work we present two methods to tune the working wavelength from UV to visible by tuning either the permittivity of the surrounding medium or that of the metal. A practical design is provided for each method. The tunable far-field superlens enables possible applications of the far-field superlens in sub-diffraction-limited imaging and sensing over a wide range of wavelength.

© 2007 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Microscopy

History
Original Manuscript: February 27, 2007
Revised Manuscript: April 25, 2007
Manuscript Accepted: April 26, 2007
Published: May 29, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Yi Xiong, Zhaowei Liu, Stéphane Durant, Hyesog Lee, Cheng Sun, and Xiang Zhang, "Tuning the far-field superlens: from UV to visible," Opt. Express 15, 7095-7102 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7095


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "The electromagnetics of substances with simultaneously negative ε and µ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003). [CrossRef] [PubMed]
  4. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  5. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  6. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402 (2005). [CrossRef] [PubMed]
  7. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  8. N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003). [CrossRef]
  9. R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002). [CrossRef]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  11. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005). [CrossRef]
  12. D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005). [CrossRef] [PubMed]
  13. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005). [CrossRef] [PubMed]
  14. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006). [CrossRef]
  15. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007). [CrossRef] [PubMed]
  16. W. Cai, D. A Genov, and V. M. Shalaev, "Superlens based on metal-dielectric composite," Phys. Rev. B 72, 193101 (2005). [CrossRef]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995). [CrossRef]
  18. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings - enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  19. M. J. Weber, Handbook of optical materials (CRC Press, Boca Raton, Fla., 2003).
  20. P. B Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  21. D. A. G. Bruggeman, "Calculation of various physics constants in heterogeneous substances," Annu. Phys. 24, 636-664 (1935). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited