OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7103–7116

High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography

Yoshifumi Nakamura, Shuichi Makita, Masahiro Yamanari, Masahide Itoh, Toyohiko Yatagai, and Yoshiaki Yasuno  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7103-7116 (2007)
http://dx.doi.org/10.1364/OE.15.007103


View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Line-field spectral domain optical coherence tomography (LF-SDOCT) has been developed for very high-speed three-dimensional (3D) retinal imaging. By this technique, the A-line rate significantly improved to 823,200 A-lines/s for single frame imaging and 51,500 A-lines/s for continues frame imaging. The frame rate at continues frame imaging is 201 fps. This 3D acquisition speed is more than two fold higher acquisition speed than the standard flying spot SD-OCT. In this paper, the integration time of the camera was optimized for the in vivo retinal measurement and the degradation of the lateral resolution due to the ocular aberrations was suppressed by introducing the pupil stop. Owing to an optimal integration time, the motion artifact can be significantly suppressed. Also a pupil stop was employed in order to enhance the contrast of the OCT image for the effect of ocular aberrations. The in vivo 3D retinal imaging with 256 cross-sectional images (256 A-lines/image) was successfully performed in 1.3 seconds, corresponding to 0.8 volume/s. The maximum on-axis system sensitivity was measured to be 89.4 dB at a depth of 112 μm with an axial resolution of 7.4 μm in tissue. It is shown that LF-SDOCT might have a sensitivity advantage in comparison to the flying spot SD-OCT in the ultra high-speed acquisition mode.

© 2007 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 27, 2007
Revised Manuscript: April 23, 2007
Manuscript Accepted: April 26, 2007
Published: May 29, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Yoshifumi Nakamura, Shuichi Makita, Masahiro Yamanari, Masahide Itoh, Toyohiko Yatagai, and Yoshiaki Yasuno, "High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography," Opt. Express 15, 7103-7116 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7103


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. G. Hausler and M. W. Lindner, "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  3. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  4. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  5. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo highresolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  6. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003). [CrossRef] [PubMed]
  7. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk and J. S. Duker, "Three dimensional retinal imaging with high-speed ultrahigh-resolution Optical Coherence Tomography," Ophthalmology 112, 1734-1746 (2005). [CrossRef] [PubMed]
  8. M. Mujat, R. Chan, B. Cense, B. Park, Chulmin Joo, T. Akkin, T. Chen, and J. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005). [CrossRef] [PubMed]
  9. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006). [CrossRef] [PubMed]
  10. S. Jiao, C. Wu, R. W. Knighton, G. Gregori, and C. A. Puliafito, "Registration of high-density cross sectional images to the fundus image in spectral-domain ophthalmic optical coherence tomography," Opt. Express 14, 3368-3376 (2006). [CrossRef] [PubMed]
  11. S. Bourquin, P. Seitz, and R. P. Salathe, "Optical coherence topography based on a two-dimensional smart detector array," Opt. Lett. 26, 512-514 (2001). [CrossRef]
  12. M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathe, "Video-rate three-dimensional optical coherence tomography," Opt. Express 10, 429-435 (2002). [PubMed]
  13. M. Lebec, L. Blanchot, H. Saint-Jalmes, E. Beaurepaire, and A. C. Boccara, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998). [CrossRef]
  14. M. Akiba, K. P. Chan, and N. Tanno, "Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD camera," Opt. Lett. 28, 816-818 (2003). [CrossRef] [PubMed]
  15. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney "Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging," Opt. Express 14, 8675-8684 (2006). [CrossRef] [PubMed]
  16. I. Zeylikovich, A. Gilerson, and R. R. Alfano, "Nonmechanical grating-generated scanning coherence microscopy," Opt. Lett. 23, 1797-1799 (1998). [CrossRef]
  17. Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commun. 261, 376-380 (2006). [CrossRef]
  18. Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006). [CrossRef] [PubMed]
  19. A. Zuluaga and R. Richards-Kortum, "Spatially resolved spectral interferometry for determination of subsurface structure," Opt. Lett. 24, 519-521 (1999). [CrossRef]
  20. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005). [CrossRef] [PubMed]
  21. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005). [CrossRef] [PubMed]
  22. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry," Opt. Express 13, 695-701 (2005). [CrossRef] [PubMed]
  23. Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, "Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," J. Biomed. Opt. 11, 014014-014020 (2006). [CrossRef] [PubMed]
  24. American National Standards Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1 (Laser Institute of America, Orlando, Florida, 2000).
  25. M. Takeda, H. Ina, and S. Kobayashi,"Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,"J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  26. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. -P. Chan, M. Itoh, and T. Yatagai,"Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005). [CrossRef] [PubMed]
  27. R. Leitgeb,W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  28. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004). [CrossRef] [PubMed]
  29. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, "Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts," Opt. Express 12, 5614-5624 (2004). [CrossRef] [PubMed]
  30. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005). [CrossRef] [PubMed]
  31. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, and W. Drexler, P. M. Prieto and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (8182 KB)     
» Media 2: AVI (2160 KB)     
» Media 3: AVI (2270 KB)     
» Media 4: AVI (12323 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited