OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7132–7139

Plasmonic optical properties of a single gold nano-rod

Hung Ji Huang, Chin Ping Yu, Hung Chun Chang, Kuo Pin Chiu, Hao Ming Chen, Ru Shi Liu, and Din Ping Tsai  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7132-7139 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization-contrast microscopy coupled with an atomic force microscope is utilized to attain far-field optical images of the multipolar surface plasmon resonance (SPR) modes of single gold nano-rod. Modulated standing modes resulted from the interference of longitudinal SPR modes and incident light are observed and studied. By counting the average distance of adjacent beats on this single gold nano-rod, the wave vector of longitudinal SPR modes can be obtained. We found a linear relationship between the wave vectors of the incident light and the induced SPR modes. Experimental results demonstrate a feasible way on acquiring plasmonic optical properties from an individual single gold nano-rod.

© 2007 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: April 9, 2007
Revised Manuscript: May 13, 2007
Manuscript Accepted: May 13, 2007
Published: May 29, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Hung Ji Huang, Chin-ping Yu, Hung Chun Chang, Kuo Pin Chiu, Hao Ming Chen, Ru Shi Liu, and Din Ping Tsai, "Plasmonic optical properties of a single gold nano-rod," Opt. Express 15, 7132-7139 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, "Optical properties of planar metallic photonic crystal structures: Experiment and theory," Phys. Rev. B 70,125113 (2004). [CrossRef]
  2. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86,3008 (2001). [CrossRef] [PubMed]
  3. F. I. Baida, D. van Labeke, Y. Pagani, B. Guizal, and M. al Naboulsi, "Waveguiding through a two-dimensional metallic photonic crystal," J. Microsc. 213,144-148 (2004). [CrossRef] [PubMed]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  5. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000). [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998). [CrossRef]
  7. W. C. Tan, T. W. Preist, R. J. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661-12666 (1999). [CrossRef]
  8. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordianary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  9. D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh "Dynamic aperture of near-field super resolution structures," Jpn. J. Appl. Phys. 39, 982-983 (2000). [CrossRef]
  10. W. C. Liu and D. P. Tsai, "Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance," Phys. Rev. B 65,155423 (2001). [CrossRef]
  11. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  12. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman Scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  13. H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357 (1999). [CrossRef]
  14. D. P. Tsai and W. C. Lin, "Probing the near fields of the super-resolution near-field optical structure," Appl. Phys. Lett.  77, 1413-1415 (2000). [CrossRef]
  15. F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, "Nonlinear optical absorption in the AgOx-type super-resolution near-field structure," Jpn. J. Appl. Phys. 40, 4101-4102 (2001). [CrossRef]
  16. T. C. Chu, W. C. Liu, and D. P. Tsai, "Enhanced resolution induced by random silver nanoparticles in near-field optical disks," Opt. Commun. 246, 561-567 (2005). [CrossRef]
  17. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80, 4249-4252 (1999). [CrossRef]
  18. K. Imura, T. Nagahara, and H. Okamoto, "Characteristic near-field spectra of single gold nanoparticles," Chem. Phys. Lett. 400, 500-505 (2004). [CrossRef]
  19. K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109, 13214-13220 (2005). [CrossRef]
  20. G. Laurent, N. Félidj, J. Aubard, and G. Lévi, "Evidence of multipolar excitations in surface enhanced Raman scattering," Phys. Rev. B 71, 45430 (2005). [CrossRef]
  21. E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, "Multipole plasmon resonances in gold nanorods," J. Phys. Chem. B 110, 2150-2154 (2006). [CrossRef] [PubMed]
  22. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005). [CrossRef] [PubMed]
  23. C. Sonnichsen and A. P. Alivisatos, "Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy," Nano Lett. 5, 301-304 (2005). [CrossRef] [PubMed]
  24. A. Ono, J. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Phys. Rev. Letts. 95, 267407 (2005). [CrossRef]
  25. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60,9061 (1999). [CrossRef]
  26. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005). [CrossRef] [PubMed]
  27. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005). [CrossRef]
  28. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003). [CrossRef]
  29. K. Imura, T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys. 122, 154701 (2005). [CrossRef] [PubMed]
  30. N. Félidj, G. Laurent, J. Grand, J. Aubard, G. Lévi, A. Hohenau, F. R. Aussenegg, and J. R. Krenn, "Far-field Raman Imaging of short-wavelength particle plasmons on gold nanorods," Plasmonics 1, 35-39 (2006). [CrossRef]
  31. N. Taub, O. Krichevski, and G. Markovich, "Growth of gold nanorods on surfaces," J. Phys. Chem. B 107, 11579-11582 (2003). [CrossRef]
  32. H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee and S. F. Fu, "Controlling the Length and Shape of Gold Nanorods," J. Phys. Chem. B 109, 19553 (2005). [CrossRef]
  33. J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafström, D. van Labeke, and L. M. Eng, "Coupling between surface plasmon modes on metal films," Phys. Rev. B 69, 121405 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited