OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7190–7195

Photoluminescence enhancement in nanoimprinted photonic crystals and coupled surface plasmons

V. Reboud, N. Kehagias, M. Zelsmann, C. Schuster, M. Fink, F. Reuther, G. Gruetzner, and C. M. Sotomayor Torres  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7190-7195 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (805 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method to enhance the photoluminescence of dye chromophores-loaded by coupling the emission to surface plasmons in nanoimprinted photonic crystals is reported. A 9-fold enhancement in the spontaneous emission intensity of a rhodamine-doped polymer film is achieved on a silver layer due to surface plasmon excitation. By changing the surface plasmon frequency, this enhancement can be suppressed. When the polymer film is patterned by nanoimprint lithography with a two-dimensional photonic crystal the photoluminescence intensity increases up to 27 times compared to unpatterned samples on a quartz substrate.

© 2007 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(250.3680) Optoelectronics : Light-emitting polymers

ToC Category:
Photonic Crystals

Original Manuscript: February 9, 2007
Revised Manuscript: April 3, 2007
Manuscript Accepted: April 5, 2007
Published: May 29, 2007

V. Reboud, N. Kehagias, M. Zelsmann, C. Schuster, M. Fink, F. Reuther, G. Gruetzner, and C. M. Sotomayor Torres, "Photoluminescence enhancement in nanoimprinted photonic crystals and coupled surface plasmons," Opt. Express 15, 7190-7195 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Phys. Rev. Lett. 78, 3294-3297 (1997). [CrossRef]
  2. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003). [CrossRef]
  3. Y. R. Do, Y.-C. Kim, Y.-W. Song, C.-O. Cho, H. Jeon, Y.-J. Lee, and S-H. Kim, "Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals," Adv. Mater. 15, 1214-1218 (2003). [CrossRef]
  4. V. Reboud, N. Kehagias, C. M. Sotomayor Torres, M. Zelsmann, M. Striccoli, M. L. Curri, A. Agostiano, M. Tamborra, M. Fink, F. Reuther, and G. Gruetzner, "Spontaneous emission control of colloidal nanocrystals using nanoimprinted photonic crystals," Appl. Phys. Lett. 90, 011115 (2007). [CrossRef]
  5. A. Köck, E. Gornik, M. Hauser, and W. Beinstingl, "Strongly directional emission from AlGaAs/GaAs light emitting diodes," Appl. Phys. Lett. 57, 2327-2329 (1990). [CrossRef]
  6. W. L. Barnes, "Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices," J. Lightwave Technol. 17, 2170-2182 (1999). [CrossRef]
  7. J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131-1144 (2000). [CrossRef]
  8. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002) [CrossRef]
  9. I. Gontijo, M. Borodisky, E. Yablonvitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum well photoluminescence to silver surface plasmons," Phys. Rev. B 60, 11564-11567 (1999). [CrossRef]
  10. N. E. Heckera and R. A. Hopfelb, N. Sawaki, T. Maier and G. Strasser, "Surface plasmon enhanced photoluminescence from a single quantum well," Appl. Phys. Lett. 75, 1577-1579 (1999). [CrossRef]
  11. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004). [CrossRef] [PubMed]
  12. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005). [CrossRef]
  13. T. D. Neal, K. Okamoto, A. Scherer, "Surface plasmon enhanced emission from dye doped polymer layers," Optics Express 13, 5522-5527 (2005). [CrossRef] [PubMed]
  14. T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K.-Y. Jen, "Time resolved photoluminescence spectroscopy of surface-plasmon-enhanced light emission from conjugate polymers," Appl. Phys. Lett. 89, 221106 (2006). [CrossRef]
  15. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2002). [CrossRef]
  16. W. A. Weimer and J. Dyer, "Tunable surface plasmon resonance silver films," Appl. Phys. Lett. 79, 3164 (2001). [CrossRef]
  17. F.-H. Ko, L.-Y. Weng, C.-J. Ko, and T.-C. Chu, "Characterization of imprinting polymeric temperature variation with fluorescent Rhodamine B molecule," Microelectron. Eng. 83, 864-868 (2006). [CrossRef]
  18. R. Gupta, M. J. Dyer, and W. A. Weimer," Preparation and characterization of surface plasmon resonance tunable gold and silver films," J. Appl. Phys. 92, 5264-5271 (2002). [CrossRef]
  19. W. L. Barnes, "Light-emitting devices: Turning the tables on surface plasmons," Nat. Mater.  3, 588-589 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited