OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7357–7366

QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm.

Rafal Lewicki, Gerard Wysocki, Anatoliy A. Kosterev, and Frank. K. Tittel  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7357-7366 (2007)
http://dx.doi.org/10.1364/OE.15.007357


View Full Text Article

Enhanced HTML    Acrobat PDF (1181 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detection of molecules with wide unresolved rotational-vibrational absorption bands is demonstrated by using Quartz Enhanced Photoacoustic Spectroscopy and an amplitude modulated, high power, thermoelectrically cooled quantum cascade laser operating at 8.4 μm in an external cavity configuration. The laser source exhibits single frequency tuning of 135 cm-1 with a maximum optical output power of 50 mW. For trace-gas detection of Freon 125 (pentafluoroethane) at 1208.62 cm-1 a normalized noise equivalent absorption coefficient of NNEA=2.64×10-9 cm-1∙W/Hz1/2 was obtained. Noise equivalent sensitivity at ppbv level as well as spectroscopic chemical analysis of a mixture of two broadband absorbers (Freon 125 and acetone) with overlapping absorption spectra were demonstrated.

© 2007 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6430) Spectroscopy : Spectroscopy, photothermal

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 19, 2007
Revised Manuscript: May 24, 2007
Manuscript Accepted: May 24, 2007
Published: May 31, 2007

Citation
Rafal Lewicki, Gerard Wysocki, Anatoliy A. Kosterev, and Frank K. Tittel, "QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm," Opt. Express 15, 7357-7366 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Blaser, D. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4 µm," Appl. Phys. Lett. 86, 041109 (2005). [CrossRef]
  2. A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, "High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers," Appl. Phys. Lett. 84, 314-316 (2004). [CrossRef]
  3. J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, and M. Razeghi, "High-power λ~9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode," Appl. Phys. Lett. 88, 091113 (2006). [CrossRef]
  4. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli and Federico Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006). [CrossRef]
  5. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006). [CrossRef]
  6. T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, "Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler," Appl. Phys. Lett. 83, 1929-1931 (2003). [CrossRef]
  7. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, "Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications," Appl. Phys. B 81, 769-777 (2005). [CrossRef]
  8. J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~4.8 µm," Appl. Phys. Lett. 87, 041104 (2005). [CrossRef]
  9. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, "Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers," Proc Natl. Acad. Sci. U S A.2006 July 18;  103(29): 10846-10849
  10. M. C. Phillips, T. L. Myers, M. D. Wojcik, and B. D. Cannon, "External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features," Opt. Lett. 32, 1177-1179 (2007). [CrossRef] [PubMed]
  11. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli and Federico Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006). [CrossRef]
  12. A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl, and F. K. Tittel, "Quartz-enhanced photoacoustic spectroscopy," Opt. Lett. 27, 1902-1904 (2002). [CrossRef]
  13. A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky and A. Morozov, "Applications of quartz tuning fork in spectroscopic gas sensing," Rev. Sci. Instrum. 76, 043105 (2005). [CrossRef]
  14. M. D. Wojcik, M. C. Phillips, B. D. Cannon, M. S. Taubman, "Gas-phase photoacoustic sensor at 8.41 µm using quartz tuning forks and amplitude-modulated quantum cascade lasers," Appl. Phys. B 85, 307-313 (2006). [CrossRef]
  15. C. Y. Wang, L. Diehl, A. Gordon, C. Jirauschek, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, M. Troccoli, J. Faist, and F. Capasso, "Coherent instabilities in a semiconductor laser with fast gain recovery," Phys. Rev. A 75, 031802(R) (2007). [CrossRef]
  16. G. Wysocki, et.al "High power continues wave broadly tunable external cavity quantum cascade laser operating at 8.4 μm for high resolution molecular spectroscopy," to be published.
  17. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Carbon Dioxide and ammonia detection using 2µm diode laser based quartz-enhanced photoacoustic spectroscopy," Appl. Phys. B 87, 157-162 (2007). [CrossRef]
  18. A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Blaser, Y. Bonetti, and L. Hvozdara, "Photoacoustic phase shift as a chemically selective spectroscopic parameter," Appl. Phys. B 78, 673-676 (2004). [CrossRef]
  19. R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, "Fundamental limits to force detection using quartz tuning forks," Rev. Sci. Instrum. 71, 2776 (2000). [CrossRef]
  20. G. Wysocki, A. A. Kosterev, and F. K. Tittel, "Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems," Appl. Phys. B 80, 617-625 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited