OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7506–7514

Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser

Kengo Nozaki, Shota Kita, and Toshihiko Baba  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7506-7514 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic crystal slab enables us to form an ultrasmall laser cavity with a modal volume close to the diffraction limit of light. However, the thermal resistance of such nanolasers, as high as 106 K/W, has prevented continuous-wave operation at room temperature. The present paper reports on the first successful continuous-wave operation at room temperature for the smallest nanolaser reported to date, achieved through fabrication of a laser with a low threshold of 1.2 μW. Near-thresholdless lasing and spontaneous emission enhancement due to the Purcell effect are also demonstrated in a moderately low Q nanolaser, both of which are well explained by a detailed rate equation analysis.

© 2007 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 19, 2007
Revised Manuscript: May 28, 2007
Manuscript Accepted: May 28, 2007
Published: June 4, 2007

Kengo Nozaki, Shota Kita, and Toshihiko Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Maiman, "Stimulated optical radiation in ruby," Nature 187, 493−494 (1960). [CrossRef]
  2. I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett. 17, 109−111 (1970). [CrossRef]
  3. K. Iga, F. Koyama and S. Kinoshita, "Surface emitting semiconductor lasers," IEEE J. Quantum Electron.,  24, 1845−1855 (1988). [CrossRef]
  4. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1347 (1991). [CrossRef]
  5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, "Whispering gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289−291 (1992). [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, "Two dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  7. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  8. T. Kobayashi, Y. Morimoto and T. Sueta, "Closed microcavity laser," Nat. Top. Meet. Rad. Sci. RS85-06 (1985).
  9. E. Yablonovitch and T. J. Gmitter, "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett. 58, 2059−2062 (1987). [CrossRef] [PubMed]
  10. Y. Yamamoto, ed., "Coherence, Amplification, and Quantum effects in Semiconductor Lasers," (John Wiley & Sons, New York, 1991).
  11. H. Yokoyama and K. Ujihara, eds., "Spontaneous Emission and Laser Oscillation in Microcavities," (CRC Press, New York, 1995).
  12. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997). [CrossRef]
  13. J. M. Gérard and B. Gayral, "Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089-2095 (1999). [CrossRef]
  14. M. Loncâr, T. Yoshie, A. Scherer, P. Gogna and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002). [CrossRef]
  15. H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004). [CrossRef]
  16. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki and F. Koyama, "Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature," Appl. Phys. Lett. 85, 3989−3991 (2004). [CrossRef]
  17. T. Baba and D. Sano, "Low threshold lasing and Purcell effect in microdisk lasers at room temperature," IEEE J. Sel. Top. Quantum Electron. 9, 1340-1346 (2003). [CrossRef]
  18. R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.-Optoelectron. 145, 391−397 (1998). [CrossRef]
  19. Z. Zhang and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Exp. 12, 3988−3995 (2004). [CrossRef]
  20. K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng and T. Baba, "Photonic crystal point shift nanolaser with ultimate small modal volume," Electron. Lett. 41, 843−845 (2005). [CrossRef]
  21. K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 211101 (2006). [CrossRef]
  22. K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347−1354 (2003). [CrossRef]
  23. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm," Photon. Tech. Lett. 12, 1295−1297 (2000). [CrossRef]
  24. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308−6315 (2006). [CrossRef]
  25. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuèkoviæ, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  26. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006). [CrossRef] [PubMed]
  27. M. Fujita, A. Sugitatsu, T. Uesugi and S. Noda, "Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching," Jpn. J. Appl. Phys. 43, L1400−1402 (2004). [CrossRef]
  28. T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta and T. Baba, "InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication," Jpn. J. Appl. Phys. 45, L102−L104 (2006). [CrossRef]
  29. K. Nozaki, A. Nakagawa, D. Sano and T. Baba, "Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals," IEEE J. Sel. Top. Quantum Electron. 9, 1355−1360 (2003). [CrossRef]
  30. K. Nozaki and T. Baba, "Carrier and photon analyses of photonic microlasers by two-dimensional rate equations," IEEE J. Sel. Area. Commun. 23, 1411−1417 (2005). [CrossRef]
  31. M. Fujita, A. Sakai and T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673−681 (1999). [CrossRef]
  32. J. Vuèkoviè, O. Painter, Y. Xu, A. Yariv and A. Scherer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quantum Electron. 35, 1168−1175 (1999). [CrossRef]
  33. Y. Suematsu and S. Akiba, "High-speed pulse modulation of injection lasers at non-bias condition," Trans. IECE of Japan 59, 1−8 (1976).
  34. H. Ichikawa, K. Inoshita and T. Baba, "Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation," Appl. Phys. Lett.,  78, 2119−2121 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited