OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7730–7736

Optical gain spectra for near UV to aquamarine (Al,In)GaN laser diodes

K. Kojima, Ulrich T. Schwarz, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7730-7736 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical gain spectra presented for (Al,In)GaN laser diodes with lasing wavelength ranging from UV (375 nm) to aquamarine (470 nm) show a strong increase in inhomogeneous broadening, caused by Indium composition and quantum well width fluctuations which increase with Indium mole fraction. These gain spectra provides a standard data set for the calibration of microscopic many–body simulations. We demonstrate by comparison with basic simulations that the different assumptions of a global constant carrier density or of global constant quasi–Fermi levels for electrons and holes lead to a strikingly different dependency of optical gain on carrier density. For constant quasi–Fermi levels the threshold carrier density becomes insensitive to inhomogeneous broadening for realistic parameters. This is in agreement with the observation that the threshold current is nearly independent over the wavelength range from near UV to aquamarine.

© 2007 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3430) Lasers and laser optics : Laser theory
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 23, 2007
Revised Manuscript: May 31, 2007
Manuscript Accepted: June 2, 2007
Published: June 7, 2007

K. Kojima, Ulrich T. Schwarz, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Optical gain spectra for near UV to aquamarine (Al,In)GaN laser diodes," Opt. Express 15, 7730-7736 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. V. Moloney, J. Hader, and S.W. Koch, "Quantum design of semiconductor active materials: laser and amplifier applications," Laser and Photon. Rev. 1, 1 (2007).
  2. B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, "Microscopic analysis of optical gain in InGaN/GaN quantum wells," Appl. Phys. Lett. 88, 021104 (2006). [CrossRef]
  3. J. Hader, J. V. Moloney, and S.W. Koch, "Influence of internal fields on gain and spontaneous emission in InGaN quantum wells," Appl. Phys. Lett. 89, 171120 (2006). [CrossRef]
  4. S. Masui, Y. Matsuyama, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai, "365 nm ultraviolet laser diodes composed of quaternary AlInGaN alloy," Jpn. J. Appl. Phys. 42, LL1318 (2003). [CrossRef]
  5. S. Nagahama, Y. Sugimoto, T. Kozaki, Y. Fujimura, S. Nagahama, and T. Mukai, "Recent progress of AlInGaN laser diodes," Proc. SPIE 5738, 57 (2005). [CrossRef]
  6. T. Kozaki, H. Matsumura, Y. Sugimoto, S. Nagahama, and T. Mukai, "High-power and wide wavelength range GaN-baser laser diodes," Proc. SPIE 6133, 613306-1 (2006). [CrossRef]
  7. B. W. Hakki and T. L. Paoli, "cw degradation at 300. K of GaAs double-heterostructure junction laser. II. Electronic gain," J. Appl. Phys. 44, 4113 (1973). [CrossRef]
  8. U. T. Schwarz, E. Sturm,W. Wegscheider, V. K mmler, A. Lell, and V. Härle, "Gain spectra and current-induced change of refractive index in (In/Al)GaN diode lasers," Phys. Status Solidi A 200, 143 (2003). [CrossRef]
  9. K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, T. Mukai, H. Braun, and U. T. Schwarz, "Gain suppression phenoma observed in InGaN QW laser diodes emitting at 470 nm," Appl. Phys. Lett. 89, 241127 (2006). [CrossRef]
  10. B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, "Analysis of temperature dependent optical gain in GaN/InGaN quantum well structures," IEEE Photon. Technol. Lett. 18, 1600 (2006). [CrossRef]
  11. M. Capizzi, S. Modesti, A. Frova, J. L. Staehli, M. Guzzi, and R. A. Logan, "Electron-hole plasma in direct-gap Ga1.xAlxAs and k-slection rule," Phys. Rev. B 29, 2028 (1984). [CrossRef]
  12. L. Banyai and S. W. Koch, "A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors," Z. Phys. B - Condensed Matter 63, 283 (1986). [CrossRef]
  13. U. T. Schwarz and B. Witzigmann, "Optical properties of edge-emitting lasers: measurement and simulation," in "Nitride semiconductor devices: principles and simulation," J. Piprek, Ed. (Wiley VCH, New York, 2007).
  14. A. A. Yamaguchi, M. Kuramoto, M. Nido, and M. Mizuta, "An alloy semiconductor system with a tailorable band-tail and its application to high-performance laser operation: I. A band-states model for an alloy-fluctuated InGaN-material system designed for quantum well laser operation," Semicond. Sci. Technol. 16, 763 (2001). [CrossRef]
  15. U. T. Schwarz, K. Kojima, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375 nm to 470 nm spectral range," Proc. SPIE 6485, 648506 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited