OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7737–7751

Nonreciprocal microresonators for the miniaturization of optical waveguide isolators

Naoya Kono, Kuniaki Kakihara, Kunimasa Saitoh, and Masanori Koshiba  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7737-7751 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (590 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By introducing nonreciprocal phase shifts into microresonators, we propose new designs for the miniaturization of optical waveguide isolators and circulators. We present detailed design procedures, and numerically demonstrate the operation of these magneto-optical devices. The device sizes can be reduced down to several tens of micrometers. The nonreciprocal function of these devices is due to nonreciprocal resonance shifts. Next, the operation bandwidth can be expanded by increasing the number of resonators (the filter order). This is demonstrated by comparing the characteristics of a single-resonator structure with those of a three-resonator structure. This paper furthermore presents the nonreciprocal characteristics of three-dimensional resonators with finite heights, leading to a guideline for the design of nonreciprocal optical circuits. This involves a demonstration of how the resonators with selected parameters are practical for miniaturized nonreciprocal circuits.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.0130) Integrated optics : Integrated optics
(230.3810) Optical devices : Magneto-optic systems
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: April 27, 2007
Revised Manuscript: June 1, 2007
Manuscript Accepted: June 5, 2007
Published: June 7, 2007

Naoya Kono, Kuniaki Kakihara, Kunimasa Saitoh, and Masanori Koshiba, "Nonreciprocal microresonators for the miniaturization of optical waveguide isolators," Opt. Express 15, 7737-7751 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Okamura, T. Negami, and S. Yamamoto, "Integrated optical isolator and circulator using nonreciprocal phase shifters: a proposal," Appl. Opt. 23, 1886-1889 (1984). [CrossRef] [PubMed]
  2. M. Inoue, K. Arai, T. Fujii, and M. Abe, "One-dimensional magnetophotonic crystals," J. Appl. Phys. 85, 5768-5770 (1999). [CrossRef]
  3. J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000). [CrossRef]
  4. M. Wallenhorst, M. Niemöller, H. Dötsch, R. Hertel, R. Gerhardt, and B. Gather, "Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation," J. Appl. Phys. 77, 2902-2905 (1995). [CrossRef]
  5. N. Bahlmann, M. Lohmeyer, H. Dötch, and P. Hertel, "Finite-element analysis of nonreciprocal phase shift for TE modes in magnetooptic rib waveguides with a compensation wall," IEEE J. Quantum Electron. 35, 250-253 (1999). [CrossRef]
  6. H. Yokoi, T. Mizumoto, and Y. Shoji, "Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding," Appl. Opt. 42, 6605-6612 (2003). [CrossRef] [PubMed]
  7. N. Kono and Y. Tsuji, "A novel finite-element method for nonreciprocal magneto-photonic crystal waveguides," J. Lightwave Technol. 22, 1741-1747 (2004). [CrossRef]
  8. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Express 14, 11128-11141 (2006). [CrossRef] [PubMed]
  9. J. W. Nielsen, "Magnetic bubble materials," Ann. Rev. Mater. Sci. 9, 87-121 (1979). [CrossRef]
  10. N. N. Dadoenkova, I. L. Lyubchanskii, M. I. Lyubchanskii, E. A. Shapovalov, A. E. Zabolotin, and T. Rasing, "Influence of magnetic field on nonlinear magneto-optical diffraction on two-dimensional hexagonal magnetic bubble lattice," J. Opt. Soc. Am. B 22, 215-219 (2005). [CrossRef]
  11. F. L. Teixeira and W. C. Chew, "PML-FDTD in cylindrical and spherical grids," IEEE Microw. Guided Wave Lett. 7, 285-287 (1997). [CrossRef]
  12. M. Shamonin and P. Hertel, "Analysis of nonreciprocal mode propagation in magneto-optic rib-waveguide structures with the spectral-index method," Appl. Opt. 33, 6415-6421 (1994). [CrossRef] [PubMed]
  13. N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F.-J. Schröteler, M. Wallenhorst, and H. Dötsch, "Improved design of magnetooptic rib waveguides for optical isolators," J. Lightwave Technol. 16, 818-823 (1998). [CrossRef]
  14. C.-S. Ma, Y.-Z, Xu, X. Yan, Z.-K. Qin, and X.-Y. Wang, "Effect of ring spacing on spectral response of parallel-cascaded mircroring resonator arrays," Opt. Quantum Electron. 37, 561-574 (2005). [CrossRef]
  15. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, "Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters," J. Lightwave Technol. 20, 900-905 (2002). [CrossRef]
  16. A. Melloni, "Synthesis of a parallel-coupled ring-resonator filter," Opt. Lett. 26, 917-919 (2001). [CrossRef]
  17. O. Schwelb and I. Frigyes, "A design for a high finesse parallel-coupled microring resonator filter," Microw. Opt. Technol. Lett. 38, 125-129 (2003). [CrossRef]
  18. M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Epitaxial liftoff of thin oxide layers: Yttrium iron garnets onto GaAs," Appl. Phys. Lett. 71, 2617-2619 (1997). [CrossRef]
  19. H. Yokoi and T. Mizumoto, "Proposed configuration of integrated optical isolator employing wafer-direct bounding technique," Electron. Lett. 33, 1787-1788 (1997). [CrossRef]
  20. T. Uno and S. Noge, "Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates," J. Eur. Ceramic Soc. 21, 1957-1960 (2001). [CrossRef]
  21. M. Koshiba and Y. Tsuji, "Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems," J. Lightwave Technol. 18, 737-743 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited