OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7786–7801

Imaging properties of photonic crystals

J. L. Garcia-Pomar and M. Nieto-Vesperinas  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7786-7801 (2007)
http://dx.doi.org/10.1364/OE.15.007786


View Full Text Article

Acrobat PDF (987 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We observe, by means of finite element calculations, that some photonic crystals produce negative refraction with almost circular isofrequency lines of their band diagram, so that a slab of this structure presents a large degree of isoplanatism and thus can behave like an imaging system. However, it has aberrations on comparison with a model of ideal lossless left-handed material within an effective medium theory. Further, we see that it does not produce subwavelength focusing. We discuss the limitations and requirements for such photonic crystal slabs to yield superresolved images of extended objects.

© 2007 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.2990) Imaging systems : Image formation theory
(110.4850) Imaging systems : Optical transfer functions

ToC Category:
Photonic Crystals

History
Original Manuscript: February 6, 2007
Revised Manuscript: April 27, 2007
Manuscript Accepted: May 16, 2007
Published: June 8, 2007

Citation
J. L. Garcia-Pomar and M. Nieto-Vesperinas, "Imaging properties of photonic crystals," Opt. Express 15, 7786-7801 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7786


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. G. Veselago,"The electrodynamics of substances with simultanenous negative values of ∑ and μ," Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced non-linear phenomena," IEEE Trans. Microwave Theory Tech. MTT-47, 195 (1999).
  3. R. A. Shelby, D. R. Smith, S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001). [CrossRef]
  4. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell’s law," Phys. Rev. Lett. 90, 137401 (2003). [CrossRef]
  5. C. G. Parazzoli, R. B. Greegor, and K. Li, B. E. C. Koltenbach, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef]
  6. N. Garcia and M. Nieto-Vesperinas, "Is there an experimental verification of a negative index of refraction yet?," Opt. Lett. 27, 885 (2002).
  7. N.-C. Panoiu and R. M. Osgood, "Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials," Phys. Rev. E 68, 016611 (2003). [CrossRef]
  8. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef]
  9. N. Garcia and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Phys. Rev. Lett. 88, 207403 (2002). [CrossRef]
  10. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506 (2003). [CrossRef]
  11. M. Nieto-Vesperinas, "Problem of image superresolution with a negative-refractive-index slab," J. Opt. Soc. Am. A 21, 491 (2004). [CrossRef]
  12. R. Merlin, "Analytical solution of the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290 (2004). [CrossRef]
  13. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75 (2005). [CrossRef]
  14. A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a Planar Left-Handed Transmission-Line Lens," Phys. Rev. Lett. 92, 117403 (2004). [CrossRef]
  15. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696 (2000) [CrossRef]
  16. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002). [CrossRef]
  17. D. N. Chigrin, S. Enoch C. M. Sotomayor-Torres and G. Tayeb, "Self-guiding in two-dimensional photonic crystals," Opt. Express 11, 1203 (2003). http://www.opticsexpress.org/abstract.cfm?uri=OE-11-10-1203>
  18. R. Iliew, C. Etrich, and F. Lederer, "Self-collimation of light in three-dimensional photonic crystals," Opt. Express 13, 7076 (2005). http://www.opticsexpress.org/abstract.cfm?uri=OE-13-18-7076> [CrossRef]
  19. J. L. Garcia-Pomar and M. Nieto-Vesperinas, "Waveguiding, collimation and subwavelength concentration in photonic crystals," Opt. Express 13, 7997-8007 (2005). http://www.opticsexpress.org/abstract.cfm?uri=OE-13-20-7997> [CrossRef]
  20. P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004). [CrossRef]
  21. B. Gralak, S. Enoch, G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A 17, 1012 (2000).
  22. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: Imaging by flat lens using negative refraction," Nature (London) 426, 404 (2003) [CrossRef]
  23. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two- dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003). [CrossRef]
  24. H.-T. Chien, H.-T. Tang, C.-H. Kuo, C..-C. Chen, and Z. Ye, "Directed diffraction without negative refraction," Phys. Rev. B 70, 113101 (2004). [CrossRef]
  25. Z. Y. Li and L. L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phys. Rev. B 68, 245110 (2003). [CrossRef]
  26. X. Wang, Z. F. Ren and K. Kempa, "Improved superlensing in two-dimensional photonic crystals with a basis," Appl. Phys. Lett. 86, 061105 (2004).
  27. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis "Negative refraction and superlens behavior in a two-dimensional photonic crystal" Phys. Rev. B 71, 085106 (2005). [CrossRef]
  28. C. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003). [CrossRef]
  29. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre and B. Gralak, "Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability," Phys. Rev. Lett. 97, 073905 (2006). [CrossRef]
  30. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).
  31. J. W. Goodman, Introduction to Fourier Optics (McGraw Hill, New York, 1968).
  32. J. L. Garcia-Pomar and M. Nieto-Vesperinas, "Transmission study of prisms and slabs of lossy negative index media," Opt. Express 12,2081 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2081> [CrossRef]
  33. R. Ruppin, "Surface polaritons of a left-handed material slab," J. Phys.: Condens. Matter 13, 1811 (2001). [CrossRef]
  34. A. L. Efros, C. Y. Li, and A. L. Pokrovsky, "Evanescent waves in photonic crystals and image of Veselago lens," cond-mat/0503494(2005)
  35. F. Ramos-Mendieta and P. Halevi, "Surface electromagnetic waves in two-dimensional photonic crystals: effect of the position of the surface plane," Phys. Rev. B 59, 15112 (1999). [CrossRef]
  36. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of surface photons on periodic dielectric arrays," Opt. Lett. 18, 528 (1993).
  37. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961 (1991) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited