OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7802–7809

All-optical regeneration on a silicon chip

Reza Salem, Mark A. Foster, Amy C. Turner, David F. Geraghty, Michal Lipson, and Alexander L. Gaeta  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7802-7809 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate optical 2R regeneration in an integrated silicon device consisting of an 8-mm-long nanowaveguide followed by a ring-resonator bandpass filter. The regeneration process is based on nonlinear spectral broadening in the waveguide and subsequent spectral filtering through the ring resonator. We measure the nonlinear power transfer function for the device and find an operating peak power of 6 W. Measurements indicate that the output pulse width is determined only by the bandwidth of the bandpass filter. Numerical modeling of the nonlinear process including free-carrier effects shows that this device can be used for all-optical regeneration at telecommunication data rates.

© 2007 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(190.3270) Nonlinear optics : Kerr effect
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.1150) Optical devices : All-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 15, 2007
Revised Manuscript: March 26, 2007
Manuscript Accepted: April 4, 2007
Published: June 8, 2007

Reza Salem, Mark A. Foster, Amy C. Turner, David F. Geraghty, Michal Lipson, and Alexander L. Gaeta, "All-optical regeneration on a silicon chip," Opt. Express 15, 7802-7809 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proc. European Conference on Optical Communications (ECOC’98), p. 475, 1998.
  2. J. Yu and P. Jeppesen, "Simultaneous all-optical demultiplexing and regeneration based on self-phase and cross-phase modulation in a dispersion shifted fiber," J. Lightwave Technol. 19, 941-949 (2001). [CrossRef]
  3. V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005). [CrossRef] [PubMed]
  4. A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Poti, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," J. Quantum Electron. 10, 192-196 (2004).
  5. S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006). [CrossRef]
  6. H. Simos, A. Bogris, and D. Syvridis, "Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier," J. Lightwave Technol. 22, 595-604 (2004). [CrossRef]
  7. M Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006). [CrossRef]
  8. N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, and S. Akiba, "Benefit of SPM-based all-optical reshaper for long-haul DWDM transmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2004). [CrossRef]
  9. M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2880> [CrossRef] [PubMed]
  10. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004), http://www.opticsexpress.org/abstract.cfm?uri=OE-12-17-4094> [CrossRef] [PubMed]
  11. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-12-5524> [CrossRef] [PubMed]
  12. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic-wire waveguides," Opt. Express 14, 12380-12387 (2006), http://www.opticsexpress.org/abstract.cfm?id=119784> [CrossRef] [PubMed]
  13. A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004), http://www.opticsexpress.org/abstract.cfm?uri=OE-12-8-1611> [CrossRef] [PubMed]
  14. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Forst, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 µm femtosecond pulses," Opt. Express 14, 8336-8346 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-18-8336> [CrossRef] [PubMed]
  15. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta., "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006). [CrossRef] [PubMed]
  16. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 24, 11721-11726 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-24-11721> [CrossRef]
  17. K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14, 12327-12333 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-25-12327> [CrossRef] [PubMed]
  18. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-11-4786> [CrossRef] [PubMed]
  19. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  20. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003). [CrossRef]
  21. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005), http://www.opticsexpress.org/abstract.cfm?id=85498> [CrossRef] [PubMed]
  22. M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006). [CrossRef]
  23. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-10-4357> [CrossRef] [PubMed]
  24. C. A. Barrios and M. Lipson, "Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration," J. Appl. Phys. 96, 6008-6015 (2004). [CrossRef]
  25. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005). [CrossRef] [PubMed]
  26. A. G. Striegler and B. Schmauss, "Analysis and optimization of SPM-Based 2R regeneration at 40 Gb/s," J. Lightwave Technol. 24, 2835-2833 (2006). [CrossRef]
  27. T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, J.-C. Simon, and M. Joindot, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006), http://www.opticsexpress.org/abstract.cfm?id=88314> [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited