OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7845–7852

Description of near– and far–field light emitted from a metal–coated tapered fiber tip

Tomasz J. Antosiewicz and Tomasz Szoplik  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7845-7852 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analytical calculation of near– and far–field radiation emitted from a metal–coated tapered fiber probe. From FDTD simulations made in Cartesian coordinates we find that charge distribution on a tip is rim localized and its density is a bipolar periodic and continuous function. Similar angular charge density distributions may result from random irregularities of tip surfaces created in the fabrication process. Thus forward emission from a tip can be described as emission of quasi–dipoles and multi–quasi–dipoles. Analytically calculated characteristics are in agreement with our FDTD simulations and previous measurements of Obermüller and Karrai.

© 2007 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.5810) Microscopy : Scanning microscopy

ToC Category:

Original Manuscript: March 22, 2007
Revised Manuscript: May 21, 2007
Manuscript Accepted: May 23, 2007
Published: June 8, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Tomasz J. Antosiewicz and Tomasz Szoplik, "Description of near– and far–field light emitted from a metal–coated tapered fiber tip," Opt. Express 15, 7845-7852 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  2. C. J. Bouwkamp, "On Bethe’s theory of diffraction by small holes," Philips Res. Rep. 5, 321-332 (1950).
  3. Y. Leviatan, "Study of near-zone fields of a small aperture," J. Appl. Phys. 60, 1577-1583 (1986). [CrossRef]
  4. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984). [CrossRef]
  5. E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit, "Science 257, 189-95 (1992). [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998). [CrossRef]
  7. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000). [CrossRef]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820 (2002). [CrossRef] [PubMed]
  9. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  10. F. I. Baida, D. Van Labeke, and B. Guizal, "Enhanced confined light transmission by single subwavelength apertures in metallic films," Appl. Opt. 42, 6811-6815 (2003). [CrossRef] [PubMed]
  11. S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000). [CrossRef]
  12. F. Garcia de Abajo, "Light transmission through a single cylindrical hole in a metallic film," Opt. Express 10, 1475-1484 (2002).
  13. K. Y. Kim, Y. K. Cho, H. S. Tae and J. H. Lee, "Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes," Opto-Electron.Rev. 14, 233-241 (2006). [CrossRef]
  14. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004). [CrossRef] [PubMed]
  15. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun. 253, 118-124 (2005). [CrossRef]
  16. E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005). [CrossRef]
  17. K. Tanaka, M. Tanaka, and T. Sugiyama, "Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons," Opt. Express 14, 832-846 (2006). [CrossRef] [PubMed]
  18. H. F. Arnoldus and J. T. Foley, "Spatial separation of the traveling and evanescent parts of dipole radiation," Opt. Lett. 28, 1299-1301 (2003). [CrossRef] [PubMed]
  19. H. F. Arnoldus and J. T. Foley, "Highly directed transmission of multipole radiation by an interface," Opt. Commun. 246, 45-56 (2005). [CrossRef]
  20. D. J. Shin, A. Chavez-Pirson, Y. H. Lee, "Multipole analysis of the radiation from near-field optical probes," Opt. Lett. 25, 171-173 (2000). [CrossRef]
  21. A. Drezet, J. C. Woehl, and S. Huant, "Far-field emission of a tapered optical fibre tip: a theoretical; analysis," J. Microsc. 202, 359-361 (2001). [CrossRef] [PubMed]
  22. A. Drezet, J. C. Woehl, and S. Huant, "Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field optical microscopy," Phys. Rev. E 65, 046611 (2002). [CrossRef]
  23. A. Drezet, S. Huant, and J. C. Woehl, "In situ characterization of optical tips using single fluorescent nanobeads," J. Lumin. 107, 176-181 (2004). [CrossRef]
  24. C. Durkan and I. V. Shvets, "Polarization effects in reflection-mode scanning near-field optical microscopy," J. Appl. Phys. 83, 1837-1843 (1998). [CrossRef]
  25. A. Gademann, I. V. Shvets, and C. Durkan, "Study of polarization-dependant energy coupling between near-field optical probe and mesoscopic metal structure," J. Appl. Phys. 95, 3988-3993 (2004). [CrossRef]
  26. C. Obermüller and K. Karrai, "Far field characterization of diffracting circular aperture," Appl. Phys. Lett. 67, 3408-3410 (1995). [CrossRef]
  27. J. H. Kim and K. B. Song, "Recent progress of nano-technology with NSOM," Micron 38, 409-426 (2007). [CrossRef]
  28. T. Szoplik, W. M. Saj, J. Pniewski, and T. J. Antosiewicz, "Transmission of radially polarized light beams through nanoholes," Abstracts of the EOS Topical Meeting on Nanophotonics, Metamaterials and Optical Microcavities, 16-19 October 2006, Paris, France.
  29. J. D. Jackson, Classical Electrodynamisc 3rd Ed., (John Wiley & Sons, Inc., New York 1998).
  30. O. D. Jefimenko, Electricity and Magnetism, (Appleton-Century-Crofts, New York 1966).
  31. K. T. McDonald, "The relation between expressions for time-dependent electromagnetic fields given by Jefimenko and by Panofsky and Phillips," Am. J. Phys. 65, 1074 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited