OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7853–7862

High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber

Hannes Hübel, Michael R. Vanner, Thomas Lederer, Bibiane Blauensteiner, Thomas Lorünser, Andreas Poppe, and Anton Zeilinger  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7853-7862 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate non-degenerate down-conversion at 810 and 1550 nm for long-distance fiber based quantum communication using polarization entangled photon pairs. Measurements of the two-photon visibility, without dark count subtraction, have shown that the quantum correlations (raw visibility 89%) allow secure quantum cryptography after 100 km of non-zero dispersion shifted fiber using commercially available single photon detectors. In addition, quantum state tomography has revealed little degradation of state negativity, decreasing from 0.99 at the source to 0.93 after 100 km, indicating minimal loss in fidelity during the transmission.

© 2007 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: March 26, 2007
Revised Manuscript: June 1, 2007
Manuscript Accepted: June 5, 2007
Published: June 8, 2007

Hannes Hübel, Michael R. Vanner, Thomas Lederer, Bibiane Blauensteiner, Thomas Lorünser, Andreas Poppe, and Anton Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853-7862 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Dusek, N. Lutkenhaus, and M. Hendrych, "Quantum Cryptography," Prog. Opt. 49, 381-454 (2006).
  2. C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992). [CrossRef] [PubMed]
  3. H. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998). [CrossRef]
  4. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Free-Space distribution of entanglement and single photons over 144 km," http://www.arxiv.org/abs/quant-ph/0607182>.
  5. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004). [CrossRef] [PubMed]
  6. H. Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453-3460 (2006). [CrossRef] [PubMed]
  7. C. Liang, K. F. Lee, J. Chen, and P. Kumar, "Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192WDMenvironment," postdeadline paper, Optical Fiber Communications Conference (OFC2006), paper PDP35.
  8. S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldeback, M. Tengner, D. Ljunggren, A. Karlsson, "Narrowband polarization-entangled photon pairs distributed over aWDMlink for qubit networks," Opt. Express 15, 6926-6933 (2007). [CrossRef] [PubMed]
  9. D. N. Matsukevich, T. Chaneliere, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Entanglement of remote atomic qubits," Phys. Rev. Lett 96, 030405 (2006). [CrossRef] [PubMed]
  10. A. Poppe, A. Fedrizzi, R. Ursin, H. R. Bohm, T. Lorunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, "Practical quantum key distribution with polarization entangled photons," Opt. Express 12, 3865-3871 (2004). [CrossRef] [PubMed]
  11. G. Ribordy, J. Brendel, J. D. Gautier, N. Gisin, and H. Zbinden, "Long-distance entanglement-based quantum key distribution," Phys. Rev. A. 63, 012309 (2000). [CrossRef]
  12. M. Pelton, P. Marsden, D. Ljunggren, M. Tenger, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, "Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically pole KTP," Opt. Express 12, 3573-3580 (2004). [CrossRef] [PubMed]
  13. F. Konig, E.J . Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarizationentangled photons," Phys. Rev. A. 71, 033805 (2005). [CrossRef]
  14. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A. 60, R773-6 (1999). [CrossRef]
  15. D. Ljunggren and M. Tengner, "Optimal focusing for maximal collection of narrow-band photon pairs into single-mode fibers," Phys. Rev. A. 72, 062301 (2005). [CrossRef]
  16. D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, "Theory and experiment of entanglement in a quasiphase- matched two-crystal source," Phys. Rev. A. 73, 032326 (2006). [CrossRef]
  17. J. N. Damask, Polarization Optics in Telecommunications (Springer 2005).
  18. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A. 64, 052312 (2001). [CrossRef]
  19. Z. Hradil, "Quantum-state estimation," Phys. Rev. A. 55, R1561-R1564 (1997). [CrossRef]
  20. G. Vidal and R. F. Werner,"Computable measure of entanglement," Phys. Rev. A. 65, 032314 (2002). [CrossRef]
  21. P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, "Experimental entanglement distillation and ‘hidden’ non-locality," Nature 409, 1014-1017 (2001). [CrossRef] [PubMed]
  22. E. Waks, A. Zeevi, and Y. Yamamoto, "Security of quantum key distribution with entangled photons against individual attacks," Phys. Rev. A. 65, 052310 (2002). [CrossRef]
  23. G. Brassard and L. Salvail, "Secret key reconciliation by public discussion," Lecture notes in Computer Science 765, 410423 (1994). [CrossRef]
  24. N. Lutkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A 61, 052304 (2000). [CrossRef]
  25. C. Liang, K. F. Lee, M. Medic, and P. Kumar, "Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors," Opt. Express 12, 3573-3580 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited