OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7888–7893

Optical microfiber coil resonator refractometric sensor

Fei Xu, Peter Horak, and Gilberto Brambilla  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7888-7893 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (127 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel refractometric sensor based on a coated all-coupling optical-fiber-nanowire microcoil resonator which is robust, compact, and comprises an intrinsic fluidic channel. We calculate the device sensitivity and find its dependence on the nanowire diameter and coating thickness. A sensitivity as high as 700 nm/RIU and a refractive index resolution as low as 10-10 are predicted.

© 2007 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.5750) Optical devices : Resonators

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 24, 2007
Revised Manuscript: June 4, 2007
Manuscript Accepted: June 5, 2007
Published: June 8, 2007

Fei Xu, Peter Horak, and Gilberto Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. M.  Hanumegowda, C. J.  Stica, B. C.  Patel, I. M.  White, and X.  Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett.  87, 201107 (2005). [CrossRef]
  2. M. Adams, G. A. DeRose, M. Lončar, and A. Scherer, "Lithographically fabricated optical cavities for refractive index sensing," J. Vac. Sci. Technol. B 23, 3168-3173 (2005). [CrossRef]
  3. C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006).Q1 [CrossRef]
  4. I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. 7, 28-35 (2007). [CrossRef]
  5. I. M.  White, H.  Oveys, X.  Fan, T. L.  Smith, and J.  Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.  89, 191106 (2006). [CrossRef]
  6. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003). [CrossRef] [PubMed]
  7. G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004). [CrossRef] [PubMed]
  8. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004). [CrossRef] [PubMed]
  9. M. Sumetsky, "Optical fiber microcoil resonators," Opt. Express 12, 2303-2316 (2004). [CrossRef] [PubMed]
  10. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightwave Technol. 24, 242-250 (2006). [CrossRef]
  11. F. Xu and G. Brambilla, "Embedding Optical Microfiber Coil Resonators in Teflon," Opt. Lett. (in press). [PubMed]
  12. M. Sumetsky, Y. Dulashko, and M. Fishteyn, "Demonstration of a multi-turn microfiber coil resonator," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2007), postdeadline paper PDP46.
  13. F. Xu, P. Horak, and G. Brambilla, "Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator," Appl. Opt. 46, 570-573 (2007). [CrossRef] [PubMed]
  14. F. Xu, P. Horak, and G. Brambilla, "Optimized Design of Microcoil Resonators," J. Lightwave Technol. (in press).
  15. D. Marcuse, F. Ladouceur, and J. D. Love, "Vector modes of D-shaped fibers," IEE Proc. J. 139, 117-126 (1992).
  16. M. S. Dinleyici and D. B. Patterson, "Vector modal solution of evanescent coupler," J. Lightwave Technol. 15, 2316-2324 (1997). [CrossRef]
  17. C. Y. Chao and L. J. Guo, "Design and Optimization of Microring Resonators in Biochemical Sensing Applications," J. Lightwave Technol. 24, 1395-1402 (2006). [CrossRef]
  18. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005). [CrossRef]
  19. O. Esteban, N. Díaz-Herrera, M.-C. Navarrete, and A. González-Cano, "Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration," Appl. Opt. 45, 7294-7298 (2006).
  20. G. M. Hale and M. R. Querry, "Optical Constants of Water in the 200nm to 200m Wavelength Region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  21. M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett.  85, 74-77 (2000). [CrossRef] [PubMed]
  22. P. Dress, M. Belz, K. Klein, K. Grattan, and H. Franke, "Physical analysis of teflon coated capillary waveguides," Sens. Actuators B 51, 278-284 (1998).Q3 [CrossRef]
  23. R. Altkorn, I. Koev, R. P. Duyne, and M. Litorja, "Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy," Appl. Opt. 36, 8992-8998 (1997). [CrossRef]
  24. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-2742003) [CrossRef] [PubMed]
  25. I. Teraoka, S. Arnold, and F. Vollmer, "Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium," J. Opt. Soc. Am. B 20, 1937-1946 (2003). [CrossRef]
  26. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, "Microfluidic sensor based on integrated optical hollow waveguides," Opt. Lett. 29, 1894-1896 (2004). [CrossRef] [PubMed]
  27. G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical. characterisation," Electron. Lett. 42, 517-519 (2006). [CrossRef]
  28. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, and L. M. Lechuga, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sens. Actuators B 92, 151-158 (2003). [CrossRef]
  29. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, 907-912 (2003). [CrossRef]
  30. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006). [CrossRef] [PubMed]
  31. A. M. Armani and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006). [CrossRef] [PubMed]
  32. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996). [CrossRef] [PubMed]
  33. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998). [CrossRef]
  34. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  35. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  36. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited