OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 7901–7912

Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers

Danny Noordegraaf, Lara Scolari, Jesper Lægsgaard, Lars Rindorf, and Thomas Tanggaard Alkeskjold  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 7901-7912 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (703 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate electrically and mechanically induced long period gratings (LPGs) in a photonic crystal fiber (PCF) filled with a high-index liquid crystal. The presence of the liquid crystal changes the guiding properties of the fiber from an index guiding fiber to a photonic bandgap guiding fiber - a so called liquid crystal photonic bandgap (LCPBG) fiber. Both the strength and resonance wavelength of the gratings are highly tunable. By adjusting the amplitude of the applied electric field, the grating strength can be tuned and by changing the temperature, the resonance wavelength can be tuned as well. Numerical calculations of the higher order modes of the fiber cladding are presented, allowing the resonance wavelengths to be calculated. A high polarization dependent loss of the induced gratings is also observed.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3720) Optical devices : Liquid-crystal devices
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Photonic Crystal Fibers

Original Manuscript: March 26, 2007
Revised Manuscript: June 7, 2007
Manuscript Accepted: June 8, 2007
Published: June 11, 2007

Danny Noordegraaf, Lara Scolari, Jesper Lægsgaard, Lars Rindorf, and Thomas Tanggaard Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler and A. Hale, "Microstructured Optical Fiber Devices," Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  2. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004). [CrossRef] [PubMed]
  3. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton and D. J. Trevor, "Tunable photonic band gap fiber," Optical Fiber Communication Conference, 466-468 (2002).
  4. T. T. Larsen, A. Bjarklev, D. S. Hermann and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  5. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005) [CrossRef]
  6. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005). [CrossRef] [PubMed]
  7. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li and S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004). [CrossRef] [PubMed]
  8. T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006). [CrossRef]
  9. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski- Kruszelnicki and J.Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006). [CrossRef]
  10. P. Lesiak, T. R. Wolinski, K. Brzdakiewicz, K. Nowecka, S. Ertman, M. Karpierz, A. W. Domanski and R. Dabrowski, "Temperature tuning of polarization mode dispersion in single-core and two-core photonic liquid crystal fibers," Opto-Electron. Rev. 15, 27-31 (2007). [CrossRef]
  11. D. C. Zografopoulos, E. E. Kriezis and T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquidcrystal microstructured fibers," J. Lightwave Technol. 24, 3427-3432 (2006). [CrossRef]
  12. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  13. A. M. Vengsarker, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996). [CrossRef]
  14. A. M. Vengsarker, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano and C. R. Davidson, "Long-period fiber-grating-based gain equalizers," Opt. Lett. 21, 336-338 (1996). [CrossRef]
  15. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni and A. M. Vengsarkar, "Optical fiber-based dispersion compensation using higher order modes near cutoff," J. Lightwave Technol. 12, 1746-1758 (1994). [CrossRef]
  16. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996). [CrossRef] [PubMed]
  17. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006). [CrossRef] [PubMed]
  18. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Sp¨alter and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999). [CrossRef]
  19. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan and P. St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Opt. Lett. 25, 1499-1501 (2000). [CrossRef]
  20. M. D. Nielsen, G. Vienne, J. R. Folkenberg and A. Bjarklev, "Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber," Opt. Lett. 28, 236-238 (2003). [CrossRef] [PubMed]
  21. J. Kim, G.-J. Kong, U.-C. Paek, K. S. Lee and B. H. Lee, "Demonstration of an ultra-wide wavelength tunable band rejection filter implemented with photonic crystal fiber," IEICE Trans. Electron. E 88-C, 920-924 (2005). [CrossRef]
  22. P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006). [CrossRef] [PubMed]
  23. P. Steinvurzel, E. D. Moore, E. C. Magi and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006). [CrossRef] [PubMed]
  24. Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi and K. Oh, "Electrically controllable long-period liquid crystal fiber gratings," IEEE Photon. Technol. Lett. 12, 519-521 (2000). [CrossRef]
  25. Y. Jeong, H. R. Kim, S. Baek, Y. Kim, Y. W. Lee, S. D. Lee and B. Lee, "Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding," Opt. Eng.  42, 964-968 (2003). [CrossRef]
  26. H. R. Kim, Y. Kim, Y. Jeong, S. Baek, Y. W. Lee, B. Lee and S. D. Lee, "Suppression of the cladding mode interference in cascaded long period fiber gratings with liquid crystal claddings," Mol. Cryst. Liq. Cryst.,  413, 399-406 (2004). [CrossRef]
  27. COMSOL Multiphysics™, http://www.comsol.com>.
  28. J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited