OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 7974–7983

High transmission recovery of slow light in a photonic crystal waveguide using a hetero groupvelocity waveguide

Nobuhiko Ozaki, Yoshinori Kitagawa, Yoshiaki Takata, Naoki Ikeda, Yoshinori Watanabe, Akio Mizutani, Yoshimasa Sugimoto, and Kiyoshi Asakawa  »View Author Affiliations


Optics Express, Vol. 15, Issue 13, pp. 7974-7983 (2007)
http://dx.doi.org/10.1364/OE.15.007974


View Full Text Article

Acrobat PDF (2837 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High transmission of slow-light in a photonic crystal (PC) waveguide (WG) using a hetero group-velocity (Ht-Vg) PC-WG was proposed and experimentally investigated. The Ht-Vg WG, which comprises a low-group-velocity (L-Vg) PC-WG section between two identical high-group- velocity (H-Vg) PC-WGs, is designed to decrease the impedance mismatch of the L-Vg PC-WG. The increase in transmittance of a propagating pulse was confirmed in the Ht-Vg PC-WG even in the vicinity of the band-gap, whereas the homogeneous PC-WG showed a gradual decrease in transmittance with the pulse wavelength approaching the band-gap. The group index (ng) of the L-Vg region in the Ht-Vg PC-WG was measured by the cross-correlation method and attained a value above 20. On the other hand, the transmittance of the Ht-Vg structure recovered approximately 16dB compared to the homogeneous L-Vg WG having same ng, 17. This recovery is mainly dominated by the coupling improvement due to the Ht-Vg structure, around 12dB. These results indicate the effectiveness of the Ht-Vg structure to use slow light in a PC-WG, which leads to various applications in PC-based optical devices.

© 2007 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Photonic Crystals

History
Original Manuscript: April 2, 2007
Revised Manuscript: June 9, 2007
Manuscript Accepted: June 10, 2007
Published: June 12, 2007

Citation
Nobuhiko Ozaki, Yoshinori Kitagawa, Yoshiaki Takata, Naoki Ikeda, Yoshinori Watanabe, Akio Mizutani, Yoshimasa Sugimoto, and Kiyoshi Asakawa, "High transmission recovery of slow light in a photonic crystal waveguide using a hetero groupvelocity waveguide," Opt. Express 15, 7974-7983 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7974


Sort:  Year  |  Journal  |  Reset

References

  1. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  2. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, "Ultra-fast Photonic Crystal/Quantum Dot all-optical switch for Future Photonic Network," Opt. Express 12, 6606-6614 (2004). [CrossRef]
  3. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel and R. Baets, "Photonic crystal and quantum dot technologies for all-optical switch and logic device," New J. Phys. 8, 208 (2006). [CrossRef]
  4. Y. Watanabe, N. Yamamoto, K. Komori, H. Nakamura, Y. Sugimoto, Y. Tanaka, N. Ikeda, and K. Asakawa, "Simulation of group-velocity-dependent phase shift induced by refractive-index change in an air-bridge-type AlGaAs two-dimensional photonic crystal slab waveguide," J. Opt. Soc. Am. B 21, 1833-1838 (2004). [CrossRef]
  5. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608 (2002). [CrossRef]
  6. D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005). [CrossRef]
  7. E. Miyai and S. Noda, "Structural dependence of coupling between a two-dimensional photonic crystal waveguide and a wire waveguide," J. Opt. Soc. Am. B 21, 67-72 (2004). [CrossRef]
  8. Y. A. Vlasov and S. J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31, 50-52 (2006). [CrossRef]
  9. H. Nakamura, K. Kanamoto, Y. Sugimoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, and K. Asakawa, "High-efficiency coupling to photonic crystal waveguide with low group velocity by hetero photonic crystal technique," presented at the Fifth Int. Symp. Photonic and Electromagnetic Crystal Structures (PECS-V), Kyoto, Japan, 7-11 March 2004.
  10. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue, "Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slab," J. Appl. Phys. 91, 922-929 (2002). [CrossRef]
  11. K. Inoue, in Photonic Crystals, K. Inoue and K. Ohtaka, eds., (Springer-Verlag, Berlin Heidelberg, 2004).
  12. W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, "Interferometric measurements of group delay in optical components," Opt. Lett. 13, 574-576 (1988).
  13. Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, K. Inoue, and S. G. Johnson, "Group velocity dependence of propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes," Electron. Lett. 40, 174-176 (2004). [CrossRef]
  14. A. Yu. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004). [CrossRef]
  15. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited