OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8135–8145

Detection of small particles in fluid flow using a self-mixing laser

S. Sudo, Y. Miyasaka, K. Nemoto, K. Kamikariya, and K. Otsuka  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8135-8145 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (743 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a highly sensitive, real-time method of detecting small particles in a fluid flow by self-mixing laser Doppler measurement with a laser-diode-pumped, thin-slice solid-state laser with extremely high optical sensitivity. Asymmetric power spectra of the laser output modulated by the re-injected scattered light from the small particles moving in a dilute sample-flow, through a small-diameter glass pipe, were observed. The observed power spectra are shown to reflect the velocity distribution of the fluid flow, which obeys Poiseuille’s law. Quick measurements of flow rate and kinetic viscosities of water-glycerol mixtures were also performed successfully. Measurable low-concentration limits for 262-nm polystyrene latex spheres and 3-μm red blood cells in a fluid flow were below 1 and 10 ppm, respectively, in the present self-mixing laser Doppler velocimeter system.

© 2007 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.5470) Materials : Polymers
(170.1420) Medical optics and biotechnology : Biology
(290.1350) Scattering : Backscattering

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 30, 2007
Revised Manuscript: June 9, 2007
Manuscript Accepted: June 11, 2007
Published: June 13, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

S. Sudo, Y. Miyasaka, K. Nemoto, K. Kamikariya, and K. Otsuka, "Detection of small particles in fluid flow using a self-mixing laser," Opt. Express 15, 8135-8145 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. J. Perona, T. D. Hylton, E. L. Youngblood, and R. L. Cummins, "Jet mixing of liquids in long horizontal cylindrical tanks," Ind. Eng. Chem. Res. 37, 1478-1482 (1998). [CrossRef]
  2. C. W. Turner and D. W. Smith, "Calcium carbonate scaling kinetics determined from radiotracer experiments with calcium-47," Ind. Eng. Chem. Res. 37, 439-448 (1998). [CrossRef]
  3. W. J. Kelly and S. Patel, "Flow of viscous shear-thinning fluids behind cooling coil banks in large reactors," Ind. Eng. Chem. Res. 40, 3829-3834 (2001). [CrossRef]
  4. S. Bröring, J. Fischer, T. Korte, S. Sollinger and A. Lübbert, "Flow structure of the dispersed gasphase in real multiphase chemical reactors investigated by a new ultrasound-Doppler technique," Can. J. Chem. Eng. 15, 1247-1256 (1991). [CrossRef]
  5. Y. Imai and K. Tanaka, "Direct velocity sensing of flow distribution based on low-coherence interferometry," J. Opt. Soc. Am. A 16, 2007-2012 (1999). [CrossRef]
  6. M. Saito, S. Izumida, K. Onishi, and J. Akazawa, "Detection efficiency of microparticles in laser breakdown water analysis," J. Appl. Phys. 85, 6353-6357 (1999). [CrossRef]
  7. R. K. Y. Chan and K. M. Un, "Real-time size distribution, concentration, and biomass measurement of marine phytoplankton with a novel dual-beam laser fluorescence Doppler cytometer," Appl. Opt. 40, 2956-2965 (2001). [CrossRef]
  8. S. G. Proskurin, Y. He, and R. K. Wang, "Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography," Opt. Lett. 28, 1227-1229 (2003). [CrossRef] [PubMed]
  9. K. Shirai, L. Buttner, J. Czarske, H. Muller, and F. Durst, "Heterodyne laser-Doppler line-sensor for highly resolved velocity measurements of shear flows," Flow Meas. Instrum. 16, 221-228 (2005). [CrossRef]
  10. L. E. Drain, The Laser Doppler Technique (John Wiley, N. Y., 1980).
  11. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Self-mixing technique for sensing applications," J. Opt. A 4, S283-S294 (2002). [CrossRef]
  12. L. Scalise and N. Paone, "Laser doppler vibrometry based on self-mixing effect," Opt. Lasers Eng. 38, 173-184 (2002). [CrossRef]
  13. G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003). [CrossRef]
  14. D. Han, M. Wang, and J. Zhou, "Self-mixing speckle interference in DFB lasers," Opt. Express 14, 3312-3317 (2006). [CrossRef] [PubMed]
  15. F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, "Self-mixing laser-doppler velocimetry of liquid flow and blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992). [CrossRef]
  16. M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows," Appl. Opt. 33, 5628-5641 (1994). [CrossRef] [PubMed]
  17. L. Scalise, W. Steenbergen, and F. de Mul, "Self-mixing feedback in a laser diode for intra-arterial optical blood velocimetry," Appl. Opt. 40, 4608-4615 (2001). [CrossRef]
  18. A. N. Serov, J. Nieland, S. Oosterbaan, F. F. M. de Mul, H. van Kranenburg, H. H. P. Th. Bekman, and W. Steenbergen, "Integrated optoelectronic probe Including a vertical cavity surface emitting laser for laser Doppler perfusion monitoring," IEEE Trans. on Bio-Med. Eng. 53, 2067-2073 (2006). [CrossRef]
  19. S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments," Opt. Eng. 39, 2574-2580 (2000). [CrossRef]
  20. K. Otsuka, "Effects of external perturbations on LiNdP4O12 lasers," IEEE J. Quantum Electron. QE-15, 655-663 (1979). [CrossRef]
  21. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, "Real-time nanometer vibration measurement with a self-mixing microchip solid-state laser," Opt. Lett. 27, 1339-1341 (2002). [CrossRef]
  22. K. Abe, K. Otsuka, and J.-Y. Ko, "Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction," New J. Phys.  5, 8.1-8.9 (2003). [CrossRef]
  23. K. Otsuka, K. Abe, N. Sano, S. Sudo, and J.-Y. Ko, "Two-channel self-mixing laser Doppler measurement with carrier-frequency-division multiplexing," Appl. Opt. 44, 1709-1714 (2005). [CrossRef] [PubMed]
  24. S. Sudo, Y. Miyasaka, K. Otsuka, Y. Takahashi, T. Oishi, and J.-Y. Ko, "Quick and easy measurement of particle size of Brownian particles and plankton in water using a self-mixing laser," Opt. Express 14, 1044-1054 (2006). [CrossRef]
  25. S. Sudo, Y. Miyasaka, K. Kamikariya, K. Nemoto, and K. Otsuka, "Microanalysis of Brownian particles and real-time nanometer vibrometry with a laser-diode-pumped self-mixing thin-slice solid-state laser," Jpn. J. Appl. Phys. 45, L926-L928 (2006). [CrossRef]
  26. M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995). [CrossRef]
  27. L. E. Estes, L. M. Narducci, and R. A. Tuft, "Scattering of light from a rotating ground glass," J. Opt. Soc. Am. 61, 1301 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1052 KB)     
» Media 2: MOV (884 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited