OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8157–8162

Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures

B.L. Liang, Zh. M. Wang, Yu. I. Mazur, Sh. Seydmohamadi, M. E. Ware, and G. J. Salamo  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8157-8162 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



GaAs spacer thicknesses are varied to tune the coupling between InGaAs surface quantum dots (QDs) and multilayers of buried QDs. Temperature and excitation intensity dependence of the photoluminescence together with time resolved photoluminescence reveal that coupling between layers of QDs and consequently the optical properties of both the surface and the buried QDs significantly depend on the GaAs spacer. This work provides an experimental method to tune and control the optical performance of surface QDs.

© 2007 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:

Original Manuscript: April 2, 2007
Revised Manuscript: June 4, 2007
Manuscript Accepted: June 9, 2007
Published: June 14, 2007

B. L. Liang, Zh. M. Wang, Yu. I. Mazur, Sh. Seydmohamadi, M. E. Ware, and G. J. Salamo, "Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures," Opt. Express 15, 8157-8162 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, (John Wiley & Sons, New York/Chichester, 1998).
  2. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, "Coupling and Entangling of Quantum States in QuantumDot Molecules," Science 291, 451 (2001). [CrossRef] [PubMed]
  3. S. S. Li, J. B. Xia, J. L. Liu, F. H. Yang, Z. C. Niu, S. L. Feng, and H. Z. Zheng, "InAs/GaAs single-electron quantum dot qubit," J. Appl. Phys. 90, 6151 (2001). [CrossRef]
  4. P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, "Quantum dot opto-electronic devices," Annu. Rev. Mater. Sci. 34, 1-40 (2004). [CrossRef]
  5. N. T. Yeh, T. E. Nee, J. I. Chyi, T. M. Hsu, and C. C. Huang, "Matrix dependence of strain-induced wavelength shift in self-assembled InAs quantum-dot heterostructures," Appl. Phys. Lett. 76, 1567 (2000). [CrossRef]
  6. F. Ferdos, S. M. Wang, Y. Q. Wei, A. Larsson, M. Sadeghi, and Q. X. Zhao, "Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots," Appl. Phys. Lett. 81, 1195 (2002). [CrossRef]
  7. Y. Nabetani, T. Matsumoto, G. Sasikala, and I. Suemune, "Theory of strain states in InAs quantum dots and dependence on their capping layers," J. Appl. Phys. 98, 063502, 2005. [CrossRef]
  8. H. Saito, K. Nishi, and S. Sugou, "Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 μm emission," Appl. Phys. Lett. 73, 2742 (1998). [CrossRef]
  9. J. Z. Wang, Z. Yang, C. L. Yang, and Z. G. Wang, "Photoluminescence of InAs quantum dots grown on GaAs surface," Appl. Phys. Lett. 77, 2837 (2000). [CrossRef]
  10. Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zheng, and H. C. Liu, "Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density," J. Appl. Phys. 98, 084305 (2005). [CrossRef]
  11. Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chy, P. Chen, and S. Tripathy, "Optical properties of InAs/GaAs surface quantum dots," Appl. Phys. Lett. 86, 031914 (2005). [CrossRef]
  12. C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater. 4, 826 (2005). [CrossRef] [PubMed]
  13. W. Cai, D. W. Shin, K. Chen, O. CHeysens, Q. Z. Cao, S. X. Wang, S. S. Gambhir, and X. Y. Chen, "Peptide-labeled near-infrared quantum dots for Imaging tumor vasculature in living subjects," Nano Lett. 6, 669 (2006). [CrossRef] [PubMed]
  14. K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, "Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density," Phys. Chem. Chem. Phys. 4, 785 (2002). [CrossRef]
  15. E. F. Duijs, F. Findeis, R. A. Deutschmann, M. Bichler, A. Zrenner, G. Abstreiter, K. Adlkofer, M. Tanaka, and E. Sackmann, "Influence of Thiol coupling on photoluminescence of near surface InAs quantum dots," Phys. Stat. Sol.(b) 224, 871 (2001). [CrossRef]
  16. B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. DecuirJr., and M. O. Manasreh, "Correlation between surface and buried InAs quantum dots," Appl. Phys. Lett. 89, 043125 (2006). [CrossRef]
  17. B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, "Photoluminescence of surface InAs quantum dots stacking on multilayer buried quantum dots," Appl. Phys. Lett. 89, 243124 (2006). [CrossRef]
  18. Zh. M. Wang, Yu. I. Mazur, Sh. Seydmohamadi, G. J. Salamo, and H. Kissel, "Photoluminescence linewidths from multiple layers of laterally self-ordered InGaAs quantum dots," Appl. Phys. Lett. 87, 213105 (2005). [CrossRef]
  19. P. Hove, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, "Strain-interactions between InAs/GaAs quantum dots layers," Thin Solid Films 464-465, 225 (2004).
  20. V. Talalaev, J. Tomm, N. Zakharov, P. Werner, B. Novikov, and A. Tonkikh, "Transient spectroscopy of InAs quantum dot molecules," Appl. Phys. Lett. 85, 284 (2004). [CrossRef]
  21. Yu. I. Mazur, Z. M. Wang, G. G. Tarasov, M. Xiao, G. J. Salamo, J. W. Tomm, V. Talalaev, and H. Kissel, "Interdot carrier transfer in asymmetric bilayer InAs/GaAs quantum dot structures," Appl. Phys. Lett. 86, 063102 (2005). [CrossRef]
  22. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, "Excitation transfer in self-organized asymmetric quantum dot pair," Phys. Rev. B. 58, R10151 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited