OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8170–8175

Mode locking using stimulated Raman scattering

David J. Spence and Richard P. Mildren  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8170-8175 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (162 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent experiments have shown that the simple addition of a length of Raman-shifting fibre in the cavity of a cw-pumped fibre laser can cause the laser to generate a stable train of pulses [Zhao and Jackson, Opt. Lett., 31 751 (2006)]. We show using a numerical model that this behavior is a new type of mode locking, driven by backward stimulated Raman scattering. This mode locking mechanism could also be applied to crystalline Raman laser systems to create a novel picosecond oscillator.

© 2007 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 24, 2007
Revised Manuscript: June 7, 2007
Manuscript Accepted: June 8, 2007
Published: June 14, 2007

David J. Spence and Richard P. Mildren, "Mode locking using stimulated Raman scattering," Opt. Express 15, 8170-8175 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. H. A. Haus, "Mode locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000). [CrossRef]
  2. K. Stankov, "Mode locking by a frequency-doubling crystal: generation of transform-limited ultrashort light pulses," Opt. Lett. 14, 359-361 (1989). [CrossRef] [PubMed]
  3. I. N. DulingIII, "All-fiber ring soliton laser mode locked with a nonlinear mirror," Opt. Lett. 16, 539-541 (1991). [CrossRef]
  4. H. M. Pask and J. A. Piper, "Diode-pumped LiIO3 intracavity Raman lasers," IEEE J. Quantum Electron. 36, 949-955 (2000). [CrossRef]
  5. J. Simons, H. Pask, P. Dekker, and J. Piper, "Small-scale, all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow-orange output at 598 nm," Opt. Commun. 229, 305-310 (2004). [CrossRef]
  6. V. A. Lisinetskii, A. S. Grabtchikov, P. A. Apanasevich, M. Schmitt, B. Kuschner, S. Schlucker, and V. A. Orlovich, "Continuous-wave solid-state Raman laser for spectroscopic applications," J. Raman Spectrosc. 37, 421-428 (2006). [CrossRef]
  7. Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, "Intracavity Raman Lasers," IEEE J. Quantum Electron. 25, 208-212 (1989). [CrossRef]
  8. C. C. Davis, Lasers and Electro-optics: fundamentals and engineering (Cambridge, Cambridge University Press 1996).
  9. Y. C. Zhao and S. D. Jackson, "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 751-753 (2006). [CrossRef] [PubMed]
  10. R. Paschotta, "Comment on "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 2737-2738 (2006). [CrossRef] [PubMed]
  11. Y. C. Zhao and S. D. Jackson, "Reply to comment on "Passively Q-switched fiber laser that uses saturable Raman gain," Opt. Lett. 31, 2739-2740 (2006). [CrossRef]
  12. Y. C. Zhao and S. D. Jackson, Optical Fibre Technology Park, University of Sydney, Australia (Personal communication, 2007).
  13. A. Penzkofer, A. Laubereau, and W. Kaiser, "High intensity Raman interactions," Prog. Quantum Electron. 6, 55-140 (1979). [CrossRef]
  14. A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, "Continuous-wave Raman generation in a diode-pumped Nd3+: KGd(WO4)(2) laser," Opt. Lett. 30, 1701-1703 (2005). [CrossRef] [PubMed]
  15. H. M. Pask, "Continuous-wave, all-solid-state, intracavity Raman laser," Opt. Lett. 30, 2454-2456 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

Supplementary Material

» Media 1: MOV (3481 KB)     
» Media 2: MOV (2564 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited