OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8176–8190

Image based adaptive optics through optimisation of low spatial frequencies

Delphine Débarre, Martin J. Booth, and Tony Wilson  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8176-8190 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1874 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a wave front sensorless adaptive optics scheme for an incoherent imaging system. Aberration correction is performed through the optimisation of an image quality metric based upon the low spatial frequency content of the image. A sequence of images is acquired, each with a different aberration bias applied and the correction aberration is estimated from the information in this image sequence. It is shown, by representing aberrations as an expansion in Lukosz modes, that the effects of different modes can be separated. The optimisation of each mode becomes independent and can be performed as the maximisation of a quadratic function, requiring only three image measurements per mode. This efficient correction scheme is demonstrated experimentally in an incoherent transmission microscope. We show that the sensitivity to different aberration magnitudes can be tuned by changing the range of spatial frequencies used in the metric. We also explain how the optimisation scheme is related to other methods that use image sharpness metrics.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(110.4850) Imaging systems : Optical transfer functions

ToC Category:
Adaptive Optics

Original Manuscript: March 29, 2007
Revised Manuscript: June 11, 2007
Manuscript Accepted: June 11, 2007
Published: June 14, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Delphine Debarre, Martin J. Booth, and Tony Wilson, "Image based adaptive optics through optimisation of low spatial frequencies," Opt. Express 15, 8176-8190 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. K. Tyson, Principles of Adaptive Optics, Academic Press, London, 1991.
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes, (Oxford University Press, 1998).
  3. R. A. Gonsalves, "Phase retrieval and diversity in adaptive optics," Opt. Engineering 21, 829-832 (1982).
  4. D. R. Luke, J. V. Burke and R. G. Lyon, "Optical wavefront reconstruction: theory and numerical methods," SIAM Review 44, 169-224 (2002).Q1 [CrossRef]
  5. R. A. Muller and A. Buffington, "Real-time correction of atmospherically degraded telescope images through image sharpening," J. Opt. Soc. Am. 64, 1200-1210 (1974). [CrossRef]
  6. A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, and R. G. Smits, "Correction of atmospheric distortion with an image-sharpening telescope," J. Opt. Soc. Am. 67, 298-303 (1977). [CrossRef]
  7. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, "Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field," J. Opt. Soc. Am. A 13, 1456-1466 (1996). [CrossRef]
  8. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, "Adaptive phase-distortion correction based on parallel gradient-descent optimization," Opt. Lett. 22, 907-909 (1997). [CrossRef] [PubMed]
  9. N. Doble, Image Sharpness Metrics and Search Strategies for Indirect Adaptive Optics. PhD thesis, University of Durham, United Kingdom, 2000.
  10. J. R. Fienup and J. J. Miller, "Aberration correction by maximizing generalized sharpness metrics," J. Opt. Soc. Am. A 20, 609-620, 2003. [CrossRef]
  11. L. Murray, J. C. Dainty, and E. Daly, "Wavefront correction through image sharpness maximisation," in Proc. S.P.I.E., ‘Opto-Ireland 2005: Imaging and Vision’  5823, 40-47 (2005).Q2
  12. M. J. Booth, "Wave front sensor-less adaptive optics: a model-based approach using sphere packings," Opt. Express 14, 1339-1352 (2006). [CrossRef] [PubMed]
  13. M. J. Booth, "Wavefront sensorless adaptive optics for large aberrations," Opt. Lett. 32, 5-7 (2007). [CrossRef]
  14. W. Lukosz, "Der Einfluß der Aberrationen auf die optische Übertragungsfunktion bei kleinen Orts-Frequenzen," Optica Acta 10, 1-19 (1963). [CrossRef]
  15. J. Braat, "Polynomial expansion of severely aberrated wave fronts," J. Opt. Soc. Am. A 4, 643-650 (1987). [CrossRef]
  16. V. N. Mahajan, Optical Imaging and Aberrations, Part II. Wave Diffraction Optics, (SPIE, Bellingham, WA, 2001).
  17. M. J. Booth, T. Wilson, H.-B. Sun, T. Ota, and S. Kawata, "Methods for the characterisation of deformable membrane mirrors," Appl. Opt. 44, 5131-5139 (2005). [CrossRef] [PubMed]
  18. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, (Cambridge University Press, 2nd ed., 1992).
  19. J. P. Hamaker, J. D. O’Sullivan, and J. E. Noordam, "Image sharpness, Fourier optics, and redundant-spacing interferometry," J. Opt. Soc. Am. 67, 1122-1123 (1977). [CrossRef]
  20. M. A. A. Neil, M. J. Booth, and T. Wilson, "New modal wavefront sensor: a theoretical analysis," J. Opt. Soc. Am. A 17, 1098-1107 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited