OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8243–8251

Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO3 during its dynamic formation by digital holography

M. Paturzo, L. Miccio, S. De Nicola, P. De Natale, and P. Ferraro  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8243-8251 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The time behaviour of bright spatial solitons in congruent undoped lithium niobate crystal is experimentally investigated. Full field characterization of the optical wavefront emerging from the crystal during the soliton formation process is performed by digital holographic method. Experimental results of the amplitude and phase maps of the field distribution at the exit face of the crystal allow the real-time monitoring of the evolution of the soliton beam from the application of the external field to the end of the process when the generation of the channel waveguide appears to be stable. The features of the dynamics of the soliton formation are visualized, analyzed and compared to a time-dependent numerical model.

© 2007 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(190.5330) Nonlinear optics : Photorefractive optics

ToC Category:
Nonlinear Optics

Original Manuscript: March 26, 2007
Revised Manuscript: May 3, 2007
Manuscript Accepted: May 8, 2007
Published: June 18, 2007

M. Paturzo, L. Miccio, S. De Nicola, P. De Natale, and P. Ferraro, "Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO3 during its dynamic formation by digital holography," Opt. Express 15, 8243-8251 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M Segev, B Crossignani, A Yariv, and B Fisher, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992). [CrossRef] [PubMed]
  2. G. C. Duree, J. L. Shultz, G. J. S. Alamo, M. Segev, A. Yariv, B. Crossignani, P. Di Porto, E. Sharp and R. R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev.Lett. 71, 533-536 (1993). [CrossRef] [PubMed]
  3. M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crossignani, and P. Di Porto, "Observation of 2-dimensional steady-state photorefractive screening solitons," Electron Lett. 31, 826-827 (1995) [CrossRef]
  4. J. Petter and C. Denz, "Guiding and dividing waves with photorefractive solitons," Opt. Commun,  188, 55-61 (2001). [CrossRef]
  5. J. W. Fleiscer, T. Carmon, M. Segev, N. K. Efremedis, and D. N. Christodoulides, "Observation of discrete solitons in optically induced real time waveguide arrays," Phys Rev. Lett 90, 023901 (2003).
  6. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85,2193-2195 (2004). [CrossRef]
  7. G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003). [CrossRef]
  8. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons," Phys. Rev. A 52, 3095-3100 (1995). [CrossRef] [PubMed]
  9. S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, "Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals, " Opt. Lett. 28, 1433-1435 (2003). [CrossRef] [PubMed]
  10. I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, "Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion" Appl. Phys. Lett. 74, 1487-1488 (1999). [CrossRef]
  11. J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high-index waveguides in LiNbO3" Appl. Phys. Lett. 41, 607-608 (1982). [CrossRef]
  12. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini and R. Meucci, "Whole optical wavefields reconstruction by digital holography," Opt. Express 9, 294-302 (2001). [CrossRef] [PubMed]
  13. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator," Opt. Express 13, 612-620 (2005) [CrossRef] [PubMed]
  14. S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, P. De Natale, M. de Angelis, S. De Nicola, A. Finizio, and G. Pierattini, "In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography," Opt. Express 12, 1832-1842 (2004). [CrossRef] [PubMed]
  15. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, "On the origin of internal field in Lithium Niobate crystals directly observed by digital holography," Opt. Express 13, 5416-5423 (2005). [CrossRef] [PubMed]
  16. N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behaviour of bidimensional photorefractive bright spatial solitons," Phys. Rev E. 54, 6866-6875 (1996). [CrossRef]
  17. A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field," Phys. Rev. A 51, 1520-1531 (1995). [CrossRef] [PubMed]
  18. A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522-534 (1998). [CrossRef]
  19. M Chauvet, V Coda, M. Maillotte, E. Fazio, and G. Salamo "Large self-deflection of soliton beams in LiNbO3," Opt. Lett. 30, 1977-1979 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (223 KB)     
» Media 2: MOV (781 KB)     
» Media 3: MOV (255 KB)     
» Media 4: MOV (578 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited