OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8252–8262

On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations

Thomas Schreiber, Bülend Ortaç, Jens Limpert, and Andreas Tünnermann  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8252-8262 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (9445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this contribution we highlight several aspects concerning the numerical simulation of ultra-short pulse mode-locked fiber lasers by a non-distributed model. We show that for fixed system parameters multiple attractors are accessible by different initial conditions especially in the transient region between different mode-locking regimes. The reduction of multiple attractors stabilizing from different quantum noise fields to a single solution by gain ramping is demonstrated. Based on this analysis and model, different regimes of mode-locking obtained by varying the intra-cavity dispersion and saturation energy of the gain fiber are revised and it is shown that a regime producing linearly chirped parabolic pulses known from self-similar evolution is embedded in the wave-breaking free mode-locking regime.

© 2007 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 30, 2007
Revised Manuscript: May 2, 2007
Manuscript Accepted: May 5, 2007
Published: June 18, 2007

Thomas Schreiber, Bülend Ortaç, Jens Limpert, and Andreas Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. N. Akhmediev, A. Ankiewicz, Dissipative Solitons. Lecture Notes in Physics, Band 661 (2005).
  2. H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron.,  6, 1173-1185 (2000). [CrossRef]
  3. A. K. Komarov and K. P. Komarov, "Multistability and hysteresis phenomena in passive mode-locked lasers," Phys. Rev. E 62, 7607 - 7610 (2000). [CrossRef]
  4. I. P. Christov, M. M. Murnane, H. C. Kapteyn, J. Zhou, and C. -P. Huang, "Fourth-order dispersion-limited solitary pulses," Opt. Lett. 19, 1465 (1994). [CrossRef] [PubMed]
  5. M. V. Tognetti, M. N. Miranda, and H. M. Crespo, "Dispersion-managed mode-locking dynamics in a Ti:sapphire laser," Phys. Rev. A 74, 033809 (2006). [CrossRef]
  6. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment," IEEE J. Quantum Electron. 31, 591-598 (1995). [CrossRef]
  7. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  8. F. Ilday, F. Wise, and F. Kaertner, "Possibility of self-similar pulse evolution in a Ti:sapphire laser," Opt. Express 12, 2731-2738 (2004). [CrossRef] [PubMed]
  9. G. P. Agrawal, Nonlinear Fiber Optics, (3rd edition, Academic, New York 2001).
  10. N. Akhmediev, J. M. Soto-Crespo, and G. Town, "Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach," Phys. Rev. E 63, 056602 (2001). [CrossRef]
  11. U. Peschel, D. Michaelis, Z. Bakonyi, G. Onishchukov, and F. Lederer, "Dynamics of Dissipative Temporal Solitons," Lect. Notes Phys. 661, 161-181 (2005). [CrossRef]
  12. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006). [CrossRef] [PubMed]
  13. M. E. Ferman, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey. "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000). [CrossRef]
  14. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, "Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers," J. Opt. Soc. Am. B,  19, 461 (2002). [CrossRef]
  15. A. C. Peacock, R. J. Kruhlak, J. D. Harvey, J. M. Dudley, "Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion," Opt. Comm. 206, 171-177 (2002). [CrossRef]
  16. T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, "Microjoule-level all-polarization-maintaining femtosecond fiber source," Opt. Lett. 31, 574-576 (2006). [CrossRef] [PubMed]
  17. C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1576 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited