OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8309–8316

Tuning the resonance frequency of Ag-coated dielectric tips

Xudong Cui, Weihua Zhang, Boon-Siang Yeo, Renato Zenobi, Christian Hafner, and Daniel Erni  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8309-8316 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A finite element model was built to investigate how to optimize localized plasmon resonances of an Ag-coated dielectric tip for tip-enhanced Raman spectroscopy (TERS). The relation between the resonance frequency, the electric field enhancement and the optical constant of the dielectric tip was numerically investigated. The results show that increasing the refractive index of the dielectric tip can significantly red shift the localized plasmon modes excited on the Ag-coated dielectric tip, and consequently alter the field enhancement. Moreover, the influence of the width of the resonance on the Raman enhancement was also considered. When taking all the factors into account, we find that an Ag-coated low-refractive index dielectric tip provides the best Raman enhancement in the blue—green spectral range. This is consistent with our prior experimental results.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6490) Optics at surfaces : Spectroscopy, surface
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Optics at Surfaces

Original Manuscript: May 11, 2007
Revised Manuscript: June 4, 2007
Manuscript Accepted: June 6, 2007
Published: June 18, 2007

Xudong Cui, Weihua Zhang, Boon-Siang Yeo, Renato Zenobi, Christian Hafner, and Daniel Erni, "Tuning the resonance frequency of Ag-coated dielectric tips," Opt. Express 15, 8309-8316 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000). [CrossRef]
  2. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, "Metallized tip amplification of near-field Raman scattering," Opt. Commun. 183, 333-336 (2000). [CrossRef]
  3. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, (2003). [CrossRef] [PubMed]
  4. C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe Raman spectroscopy with single-molecule sensitivity," Phys. Rev. B 73, 193406 (2006). [CrossRef]
  5. K. F. Domke, D. Zhang, and B. Pettinger, "Toward Raman fingerprints of single dye molecules at atomically smooth Au(111)," J. Am. Chem. Soc. 128, 14721-14727 (2006). [CrossRef] [PubMed]
  6. W. Zhang, B. Yeo, S. Thomas, and R. Zenobi, "Single molecule tip-enhanced Raman Spectroscopy with silver tips," J. Phys. Chem. C 111, 1733-1738 (2007). [CrossRef]
  7. L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  8. A. V. Zayats, "Electromagnetic field enhancement in the context of apertureless near-field microscopy," Opt. Commun. 161, 156-162 (1999). [CrossRef]
  9. H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  10. R. J. Hamers, "Scanned probe microscopies in chemistry," J. Phys. Chem. 100, 13103-13120 (1996). [CrossRef]
  11. Y. Saito, T. Murakami, Y. Inouye, and S. Kawata, "Fabrication of silver probes for localized plasmon excitation in near-field Raman spectroscopy," Chem. Lett. 34, 920-921 (2005). [CrossRef]
  12. T. A. Yano, Y. Inouye, and S. Kawata, "Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra," Nano Lett. 6, 1269-1273 (2006). [CrossRef] [PubMed]
  13. B. Yeo, T. Schmid, W. Zhang, and R. Zenobi, "Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips," Anal. Bioanal. Chem. 387, 2655-2662 (2007). [CrossRef] [PubMed]
  14. J. B. Jackson, and N. J. Halas, "Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates," PNAS 101, 17930-17935 (2004). [CrossRef] [PubMed]
  15. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles," J. Phys. Chem. B 105, 2343-2350 (2001). [CrossRef]
  16. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  17. B. S. Yeo, W. H. Zhang, C. Vannier, and R. Zenobi, "Enhancement of Raman signals with silver-coated tips," Appl. Spectrosc. 60, 1142-1147 (2006). [CrossRef] [PubMed]
  18. C. F. Bohren, and D. R. Juffman, Absorption and scattering of light by small particles (John Wiley: New York, 1983).
  19. U. Kreibig, and M. Voller, Optical Properties of Metal Clusters (Springer: Berlin, 1995).
  20. R. W. C. P. B. Johnson, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  21. http://www.comsol.com.
  22. I. Notingher, and A. Elfick, "Effect of sample and substrate electric properties on the electric field enhancement at the Apex of SPM Nanotips," J. Phys. Chem. B 109, 15699-15706 (2005). [CrossRef]
  23. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced Raman-Scattering," J. Phys.: Condens. Matter 4, 1143-1212 (1992). [CrossRef]
  24. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  25. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A hybrid plasmonic nanostructure," Nano Lett. 6, 827-832 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited