OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8377–8382

Injection of ethanol into supercritical CO2: Determination of mole fraction and phase state using linear Raman scattering

Andreas Braeuer, Stefan Dowy, Alfred Leipertz, Robert Schatz, and Eberhard Schluecker  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8377-8382 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (157 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the pulsed injection of liquid ethanol into supercritical CO2 inside an optically accessible chamber, for the first time to the best of our knowledge the spatially and temporally resolving linear Raman scattering technique was used to simultaneously determine the mole fraction and the corresponding phase state in the ethanol jet. The mole fraction was identified by calculating the ratio of the C-H band Raman signal (2950 cm-1) of ethanol and the CO2 Raman signal. The magnitude of this ratio was found to be phase state sensitive. Thus, the phase state of the mixture of ethanol and CO2 could be classified as being homogeneous liquid, homogeneous supercritical or not yet homogeneously mixed.

© 2007 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(290.5860) Scattering : Scattering, Raman
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 9, 2007
Revised Manuscript: June 15, 2007
Manuscript Accepted: June 15, 2007
Published: June 20, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Andreas Braeuer, Stefan Dowy, Alfred Leipertz, Robert Schatz, and Eberhard Schluecker, "Injection of ethanol into supercritical CO2: Determination of mole fraction and phase state using linear Raman scattering," Opt. Express 15, 8377-8382 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. Joung and M. Perrut, "Particle design using supercritical fluids: Literature and patent survey," J. Supercrit. Fluids 20, 179-219 (2001). [CrossRef]
  2. Z. Knez and E. Weidner, "Particles formation and particle design using supercritical fluids," Curr. Opin. Solid State Mater. Sci. 7, 353-361 (2003). [CrossRef]
  3. E. Reverchon and R. Adami, "Nanomaterials and Supercritical Fluids," J. Supercrit. Fluids 37, 1-22 (2006). [CrossRef]
  4. E. Reverchon, G. Caputo, and I. De Marco, "Role of phase behavior and atomization in the supercritical antisolvent precipitation," Ind. Eng. Chem. Res. 42, 6406-6414 (2003). [CrossRef]
  5. K. Suzuki and H. Sue, "Isothermal vapor liquid equilibrium data for binary systems at high pressures: Carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-1-propanol, methane-ethanol, methane-1-propanol, ethane-ethanol, and ethane-1-propanol systems," J. Chem. Eng. Data 35, 63-66 (1990). [CrossRef]
  6. C. Day, C. J. Chang, and C-Y. Chen, "Phase equilibrium of ethanol + CO2 and acetone + CO2 at elevated pressures," J. Chem. Eng. Data 41,839-843 (1996). [CrossRef]
  7. B. E. Poling et al., The properties of gases and liquids (McGraw-Hill, 2001)
  8. A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, A. Soika, "Investigation of the combustion process in an auxiliary heating system using dual-pump CARS," J. Raman Spectrosc. 37, 633-640 (2006). [CrossRef]
  9. A. Braeuer, R. Schatz, E. Schluecker, A. Leipertz, "Characterisation of the spray dynamics in the pulsed anisolvent spray precipitator," in proceedings of ICLASS (Kyoto, Japan, 2006) paper ID ICLASS06-274.
  10. G. Herzberg, Molecular spectra and molecular structure, (Van Nostrand Company, New York 1966).
  11. M. Lapp and C. M. Penney, eds., Laser Raman Gas Diagnostics, (Plenum Press, New York 1974).
  12. A. C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach, Amsterdam 1996).
  13. K. Kohse-Höinghaus and J. B. Jeffries, Applied combustion diagnostics, (Taylor and Francis, New York 2002).
  14. T. Müller, G. Grünefeld, V. Beushausen, "High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering," Appl. Phys. B. 70,155-158 (2000). [CrossRef]
  15. P. C. Miles, "Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines," Appl. Opt. 38, 1714-1732 (1999). [CrossRef]
  16. M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, "Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy," Appl. Opt. 44, 6606-6615 (2005). [CrossRef] [PubMed]
  17. M. C. Weikl, F. Beyrau, J. Kiefer, T. Seeger, and A. Leipertz, "Combined coherent anti-Stokes Raman spectroscopy and linear Raman spectroscopy for simultaneous temperature and multiple species measurements," Opt. Lett. 31, 1908-1910 (2006). [CrossRef] [PubMed]
  18. A. Stratmann and G. Schweiger, "Fluid phase equilibria of ethanol and carbon dioxide mixtures with concentration measurements by Raman spectroscopy," Appl. Spectrosc. 56, 783-788 (2002). [CrossRef]
  19. H. W. Schrötter and H. W. Klöckner, Raman spectroscopy of gases and liquids, (Springer, 1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited