OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8428–8437

Visible three-dimensional metallic photonic crystal with non-localized propagating modes beyond waveguide cutoff

Allan S. P. Chang, Yong Sung Kim, Minfeng Chen, Zu-Po Yang, James A. Bur, Shawn-Yu Lin, and Kai-Ming Ho  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8428-8437 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (898 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report experimental realization of a 5-layer three-dimensional (3D) metallic photonic crystal structure that exhibits characteristics of a 3D complete bandgap extending from near-infrared down to visible wavelength at around 650 nm. The structure also exhibits a new kind of non-localized passband mode in the infrared far beyond its metallic waveguide cutoff. This new passband mode is drastically different from the well-known defect mode due to point or line defects. Three-dimensional finite-difference-time-domain simulations were carried out and the results suggest that the passband modes are due to intra-structure resonances.

© 2007 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.4670) Materials : Optical materials

ToC Category:
Photonic Crystals

Original Manuscript: April 3, 2007
Revised Manuscript: June 14, 2007
Manuscript Accepted: June 15, 2007
Published: June 21, 2007

Allan S. P. Chang, Yong-Sung Kim, Minfeng Chen, Zu-Po Yang, James A. Bur, Shawn-Yu Lin, and Kai-Ming Ho, "Visible three-dimensional metallic photonic crystal with non-localized propagating modes beyond waveguide cutoff," Opt. Express 15, 8428-8437 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. D. M. Whittaker, "Inhibited emission in photonic crystal lattices," Opt. Lett. 25, 779-781 (2000). [CrossRef]
  4. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-2246 (2000). [CrossRef]
  5. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002). [CrossRef] [PubMed]
  6. J. G. Fleming, and S. Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm," Opt. Lett. 24, 49-51 (1999). [CrossRef]
  7. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Nature 289, 604-606 (2000).
  8. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). [CrossRef] [PubMed]
  9. Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005). [CrossRef]
  10. J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998). [CrossRef]
  11. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, "Photonic crystals for the visible range fabricated by autocloning technique and their application," Opt. Quantum Electron. 34, 63-70 (2002). [CrossRef]
  12. S. Y. Lin, D. X. Ye, T. M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, "Achieving a photonic band edge near visible wavelengths by metallic coatings," J. Appl. Phys. 99, 083104 (2006). [CrossRef]
  13. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, "Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal," J. Opt. Soc. Am. B 20, 1538-1541 (2003). [CrossRef]
  14. S. Y. Lin, J. G. Fleming, and I. El-Kady, "Highly efficient light emission at λ = 1.5 μm by a three-dimensional tungsten photonic crystal," Opt. Lett. 28, 1683-1685 (2003). [CrossRef] [PubMed]
  15. D. L. C. Chan, M. Soljacic, and J. D. Joannopoulos, "Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs," Phys. Rev. E 74, 036615 (2006). [CrossRef]
  16. M. J. Loboda, C. M. Grove, and R. F. Schneider, "Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins," J. Electrochem. Soc. 145, 2861-2866 (1998). [CrossRef]
  17. C. R. Simovski and P. A. Belov, "Low-frequency spatial dispersion in wire media," Phys. Rev. E 70, 046616 (2004). [CrossRef]
  18. G. Subramania, and S. Y. Lin, "Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography," Appl. Phys. Lett. 85, 5037-5039 (2004). [CrossRef]
  19. Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003). [CrossRef]
  20. E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, San Diego, 1998), pp. 294-295.
  21. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004). [CrossRef] [PubMed]
  22. H. Y. Sang, Z. Y. Li, and B. Y. Gu, "Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals," Phys. Rev. E 70, 066611 (2004). [CrossRef]
  23. H. Y. Sang, Z. Y. Li, and B. Y. Gu, "Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters," J. Appl. Phys. 97, 033102 (2005). [CrossRef]
  24. Z. Y. Li and K. M. Ho, "Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals," Phys. Rev. B 67, 165104 (2003). [CrossRef]
  25. Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, "Photonic band gap effect in layer-by-layer metallic photonic crystals," J. Appl. Phys. 93, 38-42 (2003). [CrossRef]
  26. M. Laroche, R. Carminati, and J. J. Greffet, "Resonant optical transmission through a photonic crystal in the forbidden gap," Phys. Rev. B 71, 155113 (2005). [CrossRef]
  27. L. L. Chang, L. Esaki, and R. Tsu, "Resonant tunneling in semiconductor double barriers," Appl. Phys. Lett. 24, 593-595 (1974). [CrossRef]
  28. S. Y. Lin and G. Arjavalingam, "Photonic bound states in two-dimensional photonic crystals probed by coherent-microwave transient spectroscopy," J. Opt. Soc. Am. B 11, 2124-2127 (1994). [CrossRef]
  29. S. Y. Lin, V. M. Hietala, and S. K. Lyo, "Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity," Appl. Phys. Lett. 68, 3233-3235 (1996). [CrossRef]
  30. E. Ozbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukuolis, and K. M. Ho, "Defect structures in metallic photonic crystals," Appl. Phys. Lett. 69, 3797-3799 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited