OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8454–8464

Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region

Vygantas Mizeikis, Saulius Juodkazis, Rima Tarozaitė, Jurga Juodkazytė, Kęstutis Juodkazis, and Hiroaki Misawa  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8454-8464 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report structural and optical properties of three-dimensional periodic metallic woodpile structures obtained by direct laser writing in dielectric photoresist SU-8 and subsequent electroless coating by a thin Ni film. Signatures of photonic stop gaps were observed in optical reflection spectra of the structures at infrared wavelengths. This study demonstrates that the combination of DLW and chemical infiltration of metals is attractive as a simple and cost-efficient method for the fabrication of metalo-dielectric photonic crystals.

© 2007 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Photonic Crystals

Original Manuscript: May 2, 2007
Revised Manuscript: June 6, 2007
Manuscript Accepted: June 8, 2007
Published: June 22, 2007

Vygantas Mizeikis, Saulius Juodkazis, Rima Tarozaite, Jurga Juodkazyte, Kestutis Juodkazis, and Hiroaki Misawa, "Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region," Opt. Express 15, 8454-8464 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. Sigalas, C. Chan, K. Ho, and C. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744- 11751 (1995). [CrossRef]
  2. D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett. 76, 2480-2483 (1996). [CrossRef] [PubMed]
  3. I. El-Kady, M. Sigalas, R. Biswas, K. Ho, and C. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000). [CrossRef]
  4. S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. L. P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005). [CrossRef]
  5. J. T. K. Wana and C. T. Chan, "Thermal emission by metallic photonic crystal slabs," Appl. Phys. Lett. 89, 41915 (2006). [CrossRef]
  6. T. D. Drysdale, I. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173 - 5175 (2004). [CrossRef]
  7. A. Ovsianikov, A. Ostendorf, and B. Chichkov, "Three-dimensional photofabrication with femtosecond lasers for applicationsin photonics and biomedicine," Appl. Surf. Sci. (2007), in press, available online, doi:10:1016/j.apsuc.2007.01.058.
  8. V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, "Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap," Appl. Phys. Lett. 82, 508-510 (2002). [CrossRef]
  9. V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for infrared spectral range," Opt. Lett. 29, 2061 - 2063 (2004). [CrossRef] [PubMed]
  10. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral - architecture photonic crystals obtained by direct laser writing," Adv. Mat. 17, 541 - 545 (2005). [CrossRef]
  11. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-7 (2004). [CrossRef] [PubMed]
  12. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Spiral three-dimensional photonic crystals for telecommunications spectral range," Appl. Phys. A 82, 683-688 (2006). [CrossRef]
  13. M. Lindblom, H. Hertz, and A. Holmberg, "SU-8 plating mold for high-aspect-ratio nickel zone plates," Microelectron. Eng. (2007), in press, available online, doi:10:1016/j.mee.2007.01.109.
  14. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, and A. I. S. Kawata, "Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization," Opt. Express 14, 800 - 809 (2006). [CrossRef] [PubMed]
  15. V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, "Tailoring and characterization of photonic crystals," J. Photochem. Photobiol. C: Photochemistry Reviews 2, 35-69 (2001). [CrossRef]
  16. V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of photonic crystals," in "3D laser microfabrication," H. Misawa and S. Juodkazis, eds. (Willey-VCH Verlag, 2006), chap. 10, pp. 239-286.
  17. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional circular spiral potonic crystal structures recordedby femtosecond pulses," J. Non-Crystal.Solids 352, 2390-2394 (2006). [CrossRef]
  18. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stopgaps below 1 μm," Appl. Phys. Lett. 88, 221101 (2005). [CrossRef]
  19. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  20. S. Noda, "Three-dimensional photonic crystals operating at optical wavelength region," Physica B 279, 142-149 (2000). [CrossRef]
  21. S. Ogawa,M. Imada, S. Yoshimoto,M. Okano, and S. Noda, "Control of light emission by 3D photonic crystals," Science 305, 227-9 (2004). [CrossRef] [PubMed]
  22. J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002). [CrossRef] [PubMed]
  23. R. Tarozaitÿe and A. Selskis, "Electroless nickel plating with Cu2+and dicarboxylic acids additives," Trans. IMF 84, 105 -112 (2006).
  24. H. Ong, X. Yuan, S. Tao, and S. C. Tjin, "Photothermally enabled lithography for refractive-index modulation in SU-8 photoresist," Opt. Lett. 31, 1367 - 1369 (2006). [CrossRef] [PubMed]
  25. T. A. Anhoj, A. M. Jorgensen, D. A. Zauner, and J. Hubner, "The effect of soft bake temperature on the polymerization of SU-8 photoresist," J. Micromech. Microeng. 16, 1819-1824 (2006). [CrossRef]
  26. M. Ordal, L. Long, J. Bell, S. Bell, R. Alexander, and C. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983). [CrossRef] [PubMed]
  27. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284 (2003). [CrossRef]
  28. T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, "Fabrication of three-dimensional periodic microstructures in photoresist su-8 by phase-controlled holographic lithography," New J. Phys. 8, 250 (2006). [CrossRef]
  29. R. Tarozaitÿe, M. Kurtinaitienÿe, A. D¡ziuvÿe, and Z. Jusys, "Composition, microstructure and magnetic properties of electroless-plated thin Co-P films," Surf. Coat. Technol. 115, 57-65 (1999). [CrossRef]
  30. A. M. Luneckas, R. K. Tarozaitÿe, and I. K. Genutienÿe, "Properties of palladium coatings deposited using hypophosphite," Protection of metals (in Russian) 4, 496 - 498 (1971).
  31. M. ¡Salkauskas and A. Va¡skelis, Chemical Metallizing of Plastics, (in Russian), (Khimiya, Leningrad, 1985).
  32. A. Va¡skelis, J. Ja¡ciauskienÿe, A. Jagminienÿe, and E. Norkus, "Obtaining of 1B group metal films by novel electroless deposition method," Solid State Sci. 4, 1299 - 1304 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited