OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 8532–8542

Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy

Antonio Virgilio Failla, Sebastian Jäger, Tina Züchner, Mathias Steiner, and Alfred Johann Meixner  »View Author Affiliations

Optics Express, Vol. 15, Issue 14, pp. 8532-8542 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (5117 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel scattering microscopy method to detect the orientation of individual silver nanorods and to measure their relative distances. Using confocal microscopy in combination with either the fundamental or higher order laser modes, scattering images of silver nanorods were recorded. The distance between two individual nanorods was measured with an accuracy in the order of 1 nm. We detected the orientation of isolated silver nanorods with a precision of 0.5 degree that corresponds to a rotational arch of about 1 nm. The results demonstrate the potential of the technique for the visualization of non-bleaching labels in biosciences.

© 2007 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(180.1790) Microscopy : Confocal microscopy

ToC Category:

Original Manuscript: March 15, 2007
Revised Manuscript: May 10, 2007
Manuscript Accepted: May 22, 2007
Published: June 25, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Antonio V. Failla, Sebatian Jäger, Tina Züchner, Mathias Steiner, and Alfred J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy," Opt. Express 15, 8532-8542 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Klar, E. Engel, and S.W. Hell. Breaking abbes diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes, Phys. Rev. E 64066613, 2001. [CrossRef]
  2. K.I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature (London) 440935-939, 2006. [CrossRef]
  3. S. W. Hell and M. Nagorni. 4pi confocal microscopy with alternate interference, Opt. Lett. 231567-1569, 1998. [CrossRef]
  4. M. Schmidt, M. Nagorni, and S.W. Hell. Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 712742-2745, 2000. [CrossRef]
  5. B. Albrecht, A.V. Failla, A. Schweitzer, and C. Cremer. Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range, Appl. Opt. 4180-87, 2002. [CrossRef] [PubMed]
  6. A. V. Failla, U. Spoeri, B. Albrecht, A. Kroll, and C. Cremer. Nanosizing of fluorescent objects by spatially modulated illumination microscopy, Appl. Opt. 417275-7283, 2002. [CrossRef] [PubMed]
  7. A. Y. Yildiz, M. Tomishige, R. D. Vale and P. L. Selvin. Kinesis Walks Hand-Over-Hand, Science 303676-678, 2004. [CrossRef]
  8. A. P. Bartko and R. M. Dickson. Imaging Three-Dimensional Single Molecule Orientation, J.Phys.Chem.B. 10311237-11241, 1999. [CrossRef]
  9. S. Martin, A. V. Failla, U. Spoeri, C. Cremer, and A. Pombo. Measuring the size of biological nanostructures with spatially modulated illumination microscopy, Molecular Biology of the Cell 417275-7283, 2004.
  10. G. Donnert, C. Eggeling, and S. W. Hell. Major signal increase in fluorescence microscopy through dark-state relaxation, Nature (London) Methods 481-86, 2007. [CrossRef]
  11. J. Prez-Juste, L. M. Liz-Marzn, S. Carnie, D. Y.C. Chan, and P. Mulvaney. Electric-field-directed growth of gold nanorods in aqueous surfacant solutions, Adv. Funct. Mater. 14571-579, 2004. [CrossRef]
  12. B. D. Busbee, S. O. Obare, and C. J. Murphy. An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 15414-417, 2003. [CrossRef]
  13. B. Nikoobakht and M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (nrs) using seedmediated growth method, Chem. Mater. 151957-1962, 2003. [CrossRef]
  14. F. V. Ignatovich, A. Hartschuh, and L. Novotny. Detection of nanoparticles using optical gradient forces, J. Mod. Opt. 501509-1520, 2003.
  15. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar. Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface, Opt. Express 14405-414, 2006. [CrossRef] [PubMed]
  16. O. L. Muskens, N. Del Fatti, F. Valle, J. R. Huntzinger, P. Billaud, and M. Broyer. Single metal nanoparticle absorption spectroscopy and optical characterization, Appl. Phys. Lett. 88063109, 2006. [CrossRef]
  17. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers, Science 161160-1163, 2006.
  18. C. Snnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann. Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88077402, 2002. [CrossRef]
  19. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Phys. Rev. Lett. 95267405, 2005. [CrossRef]
  20. M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner. for the institute of Physical Chemistry University of Tuebingen are preparing a manuscript to be called: Plasmon enhanced luminescence in gold nanospheres aggregates.
  21. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg. Multiphoton plasmon-resonance microscopy, Opt. Express 111385-1391, 2003. [CrossRef] [PubMed]
  22. C. Soennichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles, Nature (London) 23741-745, 2005. [CrossRef]
  23. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J.Am.Chem.Soc,  1282115-2120, 2006. [CrossRef] [PubMed]
  24. H. Wang, T. B. Huff, D. A. Zweifel,W. He, P. S. Low, A. Wei, and Ji-Xin Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102:15752-15756, 2005.Q1
  25. A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner. Orientational imaging of subwavelength Au particles with higher order laser modes, Nano Lett. 61374-1378, 2006. [CrossRef] [PubMed]
  26. T. Zchner, A. V. Failla, A. Hartschuh, and A. J. Meixner. A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy. Journal ofMicroscopy Accepted 2007.
  27. C. J. R. Sheppard and D. M. Shotton. Confocal Laser Scanning Microscopy. (Bios Scientific Publishers, 1997).
  28. C. J. R. Sheppard and Y. Gong. Improvement in axial resolution by interference confocal microscopy, Optik 87129-132, 1991.Q2
  29. N. R. Jana, L. Gearheart, and C. J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun.617-618, 2001. [CrossRef]
  30. R. Dorn, S. Quabis, and G. Leuchs. Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91233901-233904, 2003. [CrossRef] [PubMed]
  31. C. F. Bohren and D. R. Huffman. Absorbtion and Scattering of Light by Small Particles. (WILEY-VCH Verlag Gmbh 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited