OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 8639–8648

Optics of metal nanoparticle aggregates with light induced motion

Sergey V. Perminov, Vladimir P. Drachev, and Sergey G. Rautian  »View Author Affiliations

Optics Express, Vol. 15, Issue 14, pp. 8639-8648 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (263 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light-induced forces between metal nanoparticles change the geometry of the aggregates and affect their optical properties. Light absorption, scattering and scattering of a probe beam are numerically studied with Newton’s equations and the coupled dipole equations for penta-particle aggregates. The relative changes in optical responses are large compared with the linear, low-intensity limit and relatively fast with nanosecond characteristic times. Time and intensity dependencies are shown to be sensitive to the initial potential of the aggregation forces.

© 2007 Optical Society of America

OCIS Codes
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(260.3910) Physical optics : Metal optics

ToC Category:
Nonlinear Optics

Original Manuscript: May 10, 2007
Revised Manuscript: June 19, 2007
Manuscript Accepted: June 20, 2007
Published: June 26, 2007

Vladimir P. Drachev, Sergey V. Perminov, and Sergey G. Rautian, "Optics of metal nanoparticle aggregates with light induced motion," Opt. Express 15, 8639-8648 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1998). [CrossRef]
  2. B. T. Draine and J. C. Weihgarther, "Radiative torques on interstellar grains I. Superthermal spin-up," Astrophys. J. 470, 551-565 (1996). [CrossRef]
  3. H. Kimura, I. J. Mann, "Radiation pressure cross section for fluffy aggregates," J. Quant. Spectrosc. Radiat. Transf. 60, 425-438 (1998). [CrossRef]
  4. A. J. Hoekstra, M. Frijlink, L. B. F. M. Waters and P. M. A. Sloot, "Radiation forces in the discrete-dipole approximation," J. Opt. Soc. Am. A 18, 1944-1953 (2001). [CrossRef]
  5. C. Sonnichsen, B. M. Reinhard, J. Liphardt and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nature Biotechnol. 23, 741-745 (2005). [CrossRef]
  6. D. Pissuwan, S. M. Valenzuela and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trends in Biotechnol. 24, 62-67 (2006). [CrossRef]
  7. I. H. El-Sayed, X. Huang and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett. 5, 829-834 (2005). [CrossRef] [PubMed]
  8. V. P. Zharov and D. O. Lapotko, "Photothermal imaging of nanoparticles (review)," IEEE J. Sel. Top. Quantum Electron. 11, 733-751 (2005). [CrossRef]
  9. J. M. Gerardy and M. Ausloos, "Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres," Phys. Rev. B 25, 4204-4229 (1982). [CrossRef]
  10. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Verlag: Berlin Heidelberg New-York, 1995).
  11. V. A. Markel, L. S. Muratov, M. I. Stockman and T. F. George, "Theory and numerical simulation of optical properties of fractal clusters," Phys. Rev. B 43, 8183-8195 (1991). [CrossRef]
  12. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim and R. L. Armstrong, "Small-particle composites. I. Linear optical properties," Phys. Rev. B 53, 2425-2436 (1996). [CrossRef]
  13. M. I. Stockman, "Chaos and Spatial Correlations for Dipolar Eigenproblems," Phys. Rev. Lett. 79, 4562-4565 (1997). [CrossRef]
  14. M. I. Stockman, "Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters," Phys. Rev. E 56, 6494-6507 (1997). [CrossRef]
  15. A. A. Lazarides and G. C. Schatz, "DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties," J. Phys. Chem. B 104, 460-467 (2000). [CrossRef]
  16. M. Quinten, "Local fields close to the surface of nanoparticles and aggregates of nanoparticles," Appl. Phys. B 73, 245-255 (2001). [CrossRef]
  17. V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov and I.L. Isaev, "Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions," Phys. Rev. B 70, 054202-054221 (2004). [CrossRef]
  18. S. V. Perminov, S. G. Rautian and V. P. Safonov, "A model of pair interactions in the theory of optical properties of fractal clusters," Opt. Spectrosc. 95, 416-420 (2003). [CrossRef]
  19. S. V. Perminov, S. G. Rautian and V. P. Safonov, "On the Theory of Optical Properties of Fractal Clusters," Sov. Phys. JETP 98, 691-704 (2004). [CrossRef]
  20. A. K. Buin, P. F. de Chatel, H. Nakotte, V. P. Drachev and V. M. Shalaev, "Saturation effect in the optical response of Ag-nanoparticle fractal aggregates," Phys. Rev. B 73, 035438-35449 (2006). [CrossRef]
  21. F. Claro and R. Rojas, "Novel laser induced interaction profiles in clusters of mesoscopic particles," Appl. Phys. Lett. 65, 2743-2745 (1994). [CrossRef]
  22. H. Xu and M. Käll, "Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates," Phys. Rev. Lett. 89, 246802-4 (2002). [CrossRef] [PubMed]
  23. A. S. Zelenina, R. Quidant, G. Badenes and M. Nieto-Vesperinas, "Tunable optical sorting and manipulation of nanoparticles via plasmon excitation," Opt. Lett. 31, 2054-2056 (2006). [CrossRef] [PubMed]
  24. A. S. Zelenina, R. Quidant and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007). [CrossRef] [PubMed]
  25. V. P. Drachev, S. V. Perminov, S. G. Rautian, V. P. Safonov and E. N. Khaliullin, "Polarization effects in nanoaggregates of silver caused by local and nonlocal nonlinear-optical responses," Sov. Phys. JETP 94, 901-915 (2002). [CrossRef]
  26. A. Hilger, M. Tenfelde and U. Kreibig, "Silver nanoparticles deposited on dielectric surfaces," Appl. Phys. B 73, 361-372 (2001). [CrossRef]
  27. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  28. C. Kittel, Introduction to Solid State Physics (Wiley: New York, 1995).
  29. L. D. Landau and E. M. Lifshitz, Classical Theory of Fields, 3rd. edition (Pergamon: London, 1971).
  30. I. E. Mazets, "Polarization of two close metal spheres in an external homogeneous electric field," Sov. Phys. Tech. Phys. 45, 1238-1240 (2000).
  31. B. Cappella and G. Dietler, "Force-distance curves by atomic force microscopy," Surface Science reports 341-104 (1999). [CrossRef]
  32. Yu. E. Danilova and V. P. Safonov, "Absorption spectra and photomodification of silver fractal clusters," in Fractal Reviews in the Natural and Applied Sciences, M. M. Novak, ed., (Chapman and Hall: London, 1995), pp. 101-111.
  33. J. F. Marco, "Supercoiled and braided DNA under tension," Phys. Rev. E 55, 1758-1772 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited