OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 8649–8659

Fabrication of high-resolution periodical structures on polymer waveguides using a replication process

Wei-Ching Chuang, Ching-Kong Chao, and Chi-Ting Ho  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 8649-8659 (2007)
http://dx.doi.org/10.1364/OE.15.008649


View Full Text Article

Enhanced HTML    Acrobat PDF (1691 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes a procedure to replicate a polymeric wavelength filter. In this work, the grating structure on a polymer is fabricated first using holographic interferometry and micro-molding processes. The polymeric wavelength filters are produced by a two-step molding process where the master mold is first formed on a negative tone photoresist and subsequently transferred to a PDMS mold; following this step, the PDMS silicon rubber mold was used as a stamp to transfer the pattern of the polymeric wavelength filters onto a UV cure epoxy. Initial results show good pattern transfer in physical shape. At the Bragg wavelength, a transmission dip of -15.5 dB relative to the -3dB background insertion loss and a 3-dB-transmission bandwidth of ∼ 6nm were obtained from the device.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 14, 2007
Revised Manuscript: June 18, 2007
Manuscript Accepted: June 18, 2007
Published: June 26, 2007

Citation
Wei-Ching Chuang, Ching-Kong Chao, and Chi-Ting Ho, "Fabrication of high-resolution periodical structure on polymer waveguides using a replication process," Opt. Express 15, 8649-8659 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8649


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Imoto, "An analysis for contradirectional-coupler-type optical grating filters," J. Lightwave Technol. 3, 895-900 (1985). [CrossRef]
  2. H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, "Continuously chirped DFB gratings by specially bent waveguides for tunable lasers," J. Lightwave Technol. 13, 1905-1912 (1995). [CrossRef]
  3. C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, "Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays," IEEE J. Quantum Electron 32, 1752-1759 (1996). [CrossRef]
  4. Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, "Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer," IEEE Photonics Technol. Lett. 8, 87-89 (1996). [CrossRef]
  5. A. Sharon, D. Rosenblatt, and A. A. Friesem, "Narrow spectral bandwidths with grating waveguide structures," Appl. Phys. Lett. 69, 4154-4156 (1996). [CrossRef]
  6. S. Yin, F. T. S. Yu, and S. Wu, "Optical monitoring for plasma-etching depth process," IEEE Photonics Technol. Lett. 4, 894-896 (1992). [CrossRef]
  7. A. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, "Effect of grating heights on highly efficient unibond SOI waveguide grating couplers," IEEE Photon. Technol. Lett. 12, 59-61 (2000). [CrossRef]
  8. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995). [CrossRef]
  9. J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003). [CrossRef]
  10. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, "Realization of integrated Bragg reflectors in DANs-polymer waveguides," J. Lightwave Technol. 11, 189-195 (1993). [CrossRef]
  11. H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, "Electron-beam directly written micro gratings for integrated optical circuits," in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE, 134, 152-159 (1980).
  12. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley,"Laser-fabricated low loss single-mode raised-rib waveguiding devices in polymers," J. Lightwave Technol. 14, 1704-1713 (1996). [CrossRef]
  13. L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, "Integrated multichannel OADMS using polymer Bragg grating MZIS," IEEE Photon. Technol. Lett. 10, 1416-1418 (1998). [CrossRef]
  14. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A Norwood, "Thermooptic planar polymer Bragg grating OADM’s with broad tuning range," IEEE Photon. Technol. Lett. 11, 448-450 (1999). [CrossRef]
  15. B. Darracq, F. Chaput, K. Lahlit, Y. Levy, and J.-P. Boilot, "Photoinscription of surface relief grating on azo-hybrid gels," Adv. Mater. 10, 1133-1136 (1998). [CrossRef]
  16. D. J. Kang, J. K. Kim, and B. S. Bae, "Simple fabrication of diffraction gratings by two beam interference method in highly photosensitivity hybrid sol-gel films," Opt. Express 12, 3947-3953 (2004). [CrossRef] [PubMed]
  17. L. Zhu, Y. Huang, W. M. J. Green, and A. Yariv, "Polymetric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing," Opt. Express 12, 6372-6376 (2004). [CrossRef] [PubMed]
  18. D.-H. Kim, W.-J. Chin, S.-S. Lee, S.-W. Ahn, and K.-D. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique," Appl. Phys. Lett. 88, 071120 (2006). [CrossRef]
  19. A. Kocabas and A. Aydinli, "Polymeric waveguide Bragg grating filter using soft lithography," Opt. Express 14, 10228-10232 (2006). [CrossRef] [PubMed]
  20. W. C. Chuang, C. T. Ho, and W. C. Wang, "Fabrication of a high resolution periodical structure using a replication process" Opt. Express 13, 6685-6692 (2005). [CrossRef] [PubMed]
  21. J. Wook Kang, J.-J. Kim, J. Kim, X. Li, and M.-H. Lee, "Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide," IEEE Photon. Technol. Lett. 14, 1297-1299 (2002). [CrossRef]
  22. T. E. Van Eck, A. J. Ticknor, R. S. Lytel, and G. F. Lipscomb, "Complementary optical tap fabricated in an electro-optic polymer waveguide", Appl. Phys. Lett. 58, 1588-1590 (1991). [CrossRef]
  23. O. Watanabe and M. Tsuchimori, "Improvement in linear and nonlinear optical-properties by blending poly(N-vinyl-2-pyrrolidone) with an electro-optic polymer," Polymer 42, 6447-6451 (2001). [CrossRef]
  24. M. Hikita, Y. Shuto, M. Amano, R. Yoshimura, S. Tomaru, and H. Kozawaguchi, "Optical intensity modulation in a vertically stacked coupler incorporating electro-optic polymer," Appl. Phys. Lett. 63, 1161-1163 (1993). [CrossRef]
  25. W. Wang, D. Chen, and H. R. Fetterman, "Travelling wave electro-optic phase modulator using cross-linked nonlinear optical polymer," Appl. Phys. Lett. 65, 929-931 (1994). [CrossRef]
  26. B. L. Booth, "Low loss channel waveguides in polymers," J. Lightwave Technol. 7, 1445-1453 (1989). [CrossRef]
  27. L. Eldada and L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Top. Quantum Electron 6, 54-68 (2000). [CrossRef]
  28. Y. Y. Maruo, S. Sasaki, and T. Tamamura, "Embedded channel polyimide waveguide fabrication by direct electron beam writing method," J. Lightwave Technol 13, 1718-1723 (1995). [CrossRef]
  29. H. Becker and W. Dietz, "Microfluidic devices for TAS applications fabricated by polymer hot embossing," in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177-181 (1998). [CrossRef]
  30. P. M. Ferm and L. W. Shacklette, "High volume manufacturing of polymer waveguides via UV- Embossing," in Linear,Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1-10 (2000). [CrossRef]
  31. K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless Photolithography: embossed photoresist as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998). [CrossRef]
  32. X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, "Demonstration of waveguide couplers fabricated using microtransfer molding," Appl. Phys. Lett. 71, 1017-1019 (1997). [CrossRef]
  33. W. C. Chuang, C. T. Ho, and W. C. Chang, "Fabrication of polymer waveguides by a replication method," Appl. Opt. 45, 8304-8307 (2006). [CrossRef] [PubMed]
  34. J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. Microeng. 7, 145-147 (1997). [CrossRef]
  35. P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, "Simple technique for replication of micro-optical elements," Opt. Eng. 37, 1804-1808 (1998). [CrossRef]
  36. M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, "Wafer-scale micro-optics replication technology," in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H. P. Herzid, eds., Proc. SPIE 5183, 148-154 (2003). [CrossRef]
  37. A. Yarin, Introduction to Optical Electronics, 3rd edition, (H. Rinehart & Winston, New York, 1984).
  38. T. Erdogan, "Optical add-drop multiplexer based on an asymmetric Bragg coupler," Opt. Commun. 157, 249-264 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited