OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 8818–8831

Influence of shot noise on phase measurement accuracy in digital holographic microscopy

Florian Charriére, Benjamin Rappaz, Jonas Kühn, Tristan Colomb, Pierre Marquet, and Christian Depeursinge  »View Author Affiliations

Optics Express, Vol. 15, Issue 14, pp. 8818-8831 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Digital Holographic Microscopy (DHM) is a single shot interferometric technique, which provides quantitative phase images with subwavelength axial accuracy. A short hologram acquisition time (down to microseconds), allows DHM to offer a reduced sensitivity to vibrations, and real time observation is achievable thanks to present performances of personal computers and charge coupled devices (CCDs). Fast dynamic imaging at low-light level involves few photons, requiring proper camera settings (integration time and gain of the CCD; power of the light source) to minimize the influence of shot noise on the hologram when the highest phase accuracy is aimed. With simulated and experimental data, a systematic analysis of the fundamental shot noise influence on phase accuracy in DHM is presented.

© 2007 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(030.5290) Coherence and statistical optics : Photon statistics
(090.1760) Holography : Computer holography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:

Original Manuscript: May 1, 2007
Revised Manuscript: June 22, 2007
Manuscript Accepted: June 22, 2007
Published: June 28, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Florian Charrière, Benjamin Rappaz, Jonas Kühn, Tristan Colomb, Pierre Marquet, and Christian Depeursinge, "Influence of shot noise on phase measurement accuracy in digital holographic microscopy," Opt. Express 15, 8818-8831 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, "Reconstruction of a hologram with a computer," Sov. Phys. Tech. Phys. 17, 333-334 (1972).
  3. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
  4. U. Schnars and W. P. O. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  5. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging," Appl. Opt. 42, 1938-1946 (2003). [CrossRef] [PubMed]
  6. C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, "Digital holographic aberration compensation in electron holography," Opt. Eng. 42, 651-655 (2003). [CrossRef]
  7. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet and C. Depeursinge, "Numerical parametric lens for shifting, magnification and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A 23, 3177-3190 (2006). [CrossRef]
  8. V. Kebbel, J. Muller, and W. P. O. Jüptner, "Characterization of aspherical micro-optics using digital holography: improvement of accuracy," in Interferometry XI: Applications, Proc. SPIE 4778, 188-197 (2002). [CrossRef]
  9. F. Charrière, J. Kühn, T. Colomb, F. Monfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, "Characterization of microlenses by digital holographic microscopy," Appl. Opt. 45, 829-835 (2006). [CrossRef] [PubMed]
  10. S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, and P. De Natale, "In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography," Opt. Express 12, 1832-1842 (2004). [CrossRef] [PubMed]
  11. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, "Fourier phase microscopy for investigation of biological structures and dynamics," Opt. Lett. 29, 2503-2505 (2004). [CrossRef] [PubMed]
  12. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, "Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy," Opt. Express 13, 9361-9373 (2005). [CrossRef] [PubMed]
  13. G. N. Vishnyakov, G. G. Levin, A. V. Likhachev, V. V. Pikalov, "Phase Tomography of 3D Biological Microobjects: numerical simulation and experimental results," Opt. Spectrosc. 87, 413-419 (1999).
  14. M. K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000). [CrossRef] [PubMed]
  15. V.  Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002). [CrossRef] [PubMed]
  16. F. Charrière, N. Pavillon, T. Colomb, Ch. Depeursinge, T. Heger, E. A. D. Mitchell, P. Marquet and B. Rappaz, "Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba," Opt. Express 14, 7005-7013 (2006). [CrossRef] [PubMed]
  17. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. Limberger, R.-P. Salathé, and Ch. Depeursinge, "Polarization microscopy by use of digital holography: application to optical fiber birefringence measurements," Appl. Opt. 44, 4461-4469 (2005). [CrossRef] [PubMed]
  18. J. W. Goodman, Statistical Optics (John Wiley & Sons, New York, 1985).
  19. O. Monnom, F. Dubois, C. Yourassowsky, and J. C. Legros, "Improvement in visibility of an in-focus reconstructed image in digital holography by reduction of the influence of out-of-focus objects," Appl. Opt. 44, 3827-3832 (2005). [CrossRef] [PubMed]
  20. D. Paganin, A. Barty, P. J. McMahon and K. A. Nugent, "Quantitative phase-amplitude microscopy. III. The effects of noise," J. Microsc. 214, 51-61 (2004). [CrossRef] [PubMed]
  21. W. J. De Ruijter and J. K. Weiss, "Detection limits in quantitative off-axis electron holography," Ultramicroscopy 50, 269-283 (1993). [CrossRef]
  22. G. A. Mills, and I. Yamaguchi, "Effects of quantization in phase-shifting digital holography," Appl. Opt. 44, 1216-1225 (2005). [CrossRef] [PubMed]
  23. T. Baumbach, E. Kolenovic, V. Kebbel, and W. Jüptner, "Improvement of accuracy in digital holography by use of multiple holograms," Appl. Opt. 45, 6077-6085 (2006). [CrossRef] [PubMed]
  24. R. F. Wagner and D. G. Brown, "Unified SNR Analysis of Medical Imaging-Systems," Phys. Med. Biol. 30, 489-518 (1985). [CrossRef]
  25. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet and Ch. Depeursinge, "Shot noise influence in reconstructed phase image SNR in digital holographic microscopy," Appl. Opt. 45, 7667-7673 (2006). [CrossRef] [PubMed]
  26. G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Observation of dynamic subdomains in red blood cells," J. Biomed. Opt. 11, 040503-3 (2006).
  27. E. Cuche, P. Marquet, and C. Depeursinge, "Aperture apodization using cubic spline interpolation: application in digital holographic microscopy," Opt. Commun. 182, 59-69 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2351 KB)     
» Media 2: AVI (2049 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited