OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 8864–8870

Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate

Aurélien Dantan, Julien Laurat, Alexei Ourjoumtsev, Rosa Tualle-Brouri, and Philippe Grangier  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 8864-8870 (2007)
http://dx.doi.org/10.1364/OE.15.008864


View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors as high as 17 and 320 nJ Fourier-limited pulses are obtained at a 800 kHz repetition rate.

© 2007 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3590) Lasers and laser optics : Lasers, titanium
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 30, 2007
Revised Manuscript: June 25, 2007
Manuscript Accepted: June 26, 2007
Published: July 2, 2007

Citation
Aurélien Dantan, Julien Laurat, Alexei Ourjoumtsev, Rosa Tualle-Brouri, and Philippe Grangier, "Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate," Opt. Express 15, 8864-8870 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8864


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Rulliere, ed., Femtosecond Laser Pulses: Principles and Experiments, 2nd edition, (Advanced Texts in Physics, 2005).
  2. S. Backus, C. G. DurfeeIII. M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998). [CrossRef]
  3. P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3, 125-133 (1986). [CrossRef]
  4. J. Squier, F. Salin, and G. Mourou, "100-fs pulse generation and amplification in Ti:Al2O3," Opt. Lett. 16, 324- 326 (1991). [CrossRef] [PubMed]
  5. C. P. J. Barty, T. Guo, C. Le Blanc, F. Rasky, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, "Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification," Opt. Lett. 21, 668-670 (1996). [CrossRef] [PubMed]
  6. Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, and S. Watanabe, "Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser," Opt. Lett. 23, 1384-1386 (1998). [CrossRef]
  7. J. Z. H. Yang and B. C. Walker, "0.09-terawatt pulses with a 31% efficient, kilohertz repetition-rate Ti:sapphire regenerative amplifier," Opt. Lett. 26, 453-455 (2001). [CrossRef]
  8. R. Budkus, R. Danelius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004). [CrossRef]
  9. D. M. Gaudiosi, A. L. Lytle, P. Kohl, M. M. Murnane, H. C. Kapteyn, and S. Backus, "11-W average power Ti:sapphire amplifier system using downchirped pulse amplification," Opt. Lett. 29, 2665-2667 (2004). [CrossRef] [PubMed]
  10. I. Matsushima, H. Yashiro, and T. Tomie, "10 kHz 40W Ti:sapphire regenerative ring amplifier," Opt. Lett. 31, 2066-2068 (2006). [CrossRef] [PubMed]
  11. K. H. Hong, S. Kostritsa, T. J. Yu, J. H. Sung, I. W. Choi, Y.-C. Noh, D.-K. Ko, and J. Lee, "100-kHz highpower femtosecond Ti:sapphire laser based on downchirped regenerative amplification," Opt. Express 14, 970- 972 (2006). [CrossRef] [PubMed]
  12. T. B. Norris, "Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation," Opt. Lett. 17, 1009-1011 (1992). [CrossRef] [PubMed]
  13. Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, "High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme," Appl. Phys. Lett. 74, 3622-3623 (1999). [CrossRef]
  14. Z. Liu, H. Murakami, T. Kozeki, H. Ohtake, and N. Sarukura, "High-gain, reflection-double pass, Ti:sapphire continuous-wave amplifier delivering 5.77 waverage power, 82MHz repetition rate, femtosecond pulses," Appl. Phys. Lett. 76, 3182-3183 (2000). [CrossRef]
  15. R. Huber, F. Adler, A. Leitenstorfer, M. Beutter, P. Baum, and E. Riedle, "12-fs pulses from a continuous-wavepumped 200-nJ Ti:sapphire amplifier at a variable repetition rate as high as 4 MHz," Opt. Lett. 28, 2118-2120 (2003). [CrossRef] [PubMed]
  16. M. Ramaswamy, M. Ulman, J. Paye, and J. J. Fujimoto, "Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A1203 laser," Opt. Lett. 18, 1822-1824 (1993). [CrossRef] [PubMed]
  17. M. S. Pshenichnikov, W. P. de Boej, and D. A. Wiersma, "Generation of 13-fs, 5-MW pulses from a cavitydumped Ti:sapphire laser," Opt. Lett. 19, 572-574 (1994). [CrossRef] [PubMed]
  18. S. Schneider, A. Stockmann, and W. Schuesslbauer, "Self-starting mode-locked cavity-dumped femtosecond Ti:sapphire laser employing a semiconductor saturable absorber mirror," Opt. Express 6, 220-226 (2000). [CrossRef] [PubMed]
  19. J. Wenger, R. Tualle-Brouri, and P. Grangier, "Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification," Opt. Lett. 29, 1267-1269 (2004). [CrossRef] [PubMed]
  20. J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Time-resolved homodyne characterization of individual quadrature-entangled pulses," Eur. Phys. J. D 32, 391-393 (2005). [CrossRef]
  21. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, "Generating Optical Schrodinger kittens for quantum information processing," Science 312, 83-86 (2006). [CrossRef] [PubMed]
  22. R. García-Patrón, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Proposal for a loopholefree Bell test using homodyne detection," Phys. Rev. Lett. 93, 130409-130412 (2004). [CrossRef] [PubMed]
  23. F. Salin, C. Le Blanc, J. Squier, and C. Barty, "Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses," Opt. Lett. 23, 718-720 (1998). [CrossRef]
  24. M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Ch’eriaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti:sapphire laser chains," Appl. Phys. B 70, S193-196 (2000). [CrossRef]
  25. M. Pittman, S. Ferrè, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, "Design and characterization of a near-diffraction-limited femtosecond 100-TW10-Hz high-intensity laser system," Appl. Phys. B 74, 529-535 (2002). [CrossRef]
  26. A. C. DeFranzo and B. G. Pazol, "Index of refraction measurement on sapphire at low temperatures and visible wavelengths," Appl. Opt. 32, 2224-2234 (1993). [CrossRef] [PubMed]
  27. H. Eilers, U. Hmmerich, and W. M. Yen, "Temperature-dependent beam-deflection spectroscopy of Ti3+-doped sapphire," J. Opt. Soc. Am. B 10, 584-586 (1993). [CrossRef]
  28. C. Byvick and A. Buoncristiani, "Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra," IEEE J. Quantum Electron. 21, 1619-1624 (1985). [CrossRef]
  29. M. Delaigue, PhD dissertation, Universite de Bordeaux (2006).
  30. Y. Li, I. Duncan, and T. Morrow, "Absolute fluorescence quantum efficiency of titanium-doped sapphire at ambient temperature," J. of Lumin. 52, 275-276 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited