OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 8943–8950

Emission characteristics of ion-irradiated In0.53Ga0.47As based photoconductive antennas excited at 1.55 μm

J. Mangeney, N. Chimot, L. Meignien, N. Zerounian, P. Crozat, K. Blary, J.F. Lampin, and P. Mounaix  »View Author Affiliations

Optics Express, Vol. 15, Issue 14, pp. 8943-8950 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed study of the effect of the carrier lifetime on the terahertz signal characteristics emitted by Br+-irradiated In0.53Ga0.47As photoconductive antennas excited by 1550 nm wavelength femtosecond optical pulses. The temporal waveforms and the average radiated powers for various carrier lifetimes are experimentally analyzed and compared to predictions of analytical models of charge transport. Improvements in bandwidth and in average power of the emitted terahertz radiation are observed with the decrease of the carrier lifetime on the emitter. The power radiated by ion-irradiated In0.53Ga0.47As photoconductive antennas excited by 1550 nm wavelength optical pulses is measured to be 0.8 μW. This value is comparable with or greater than that emitted by similar low temperature grown GaAs photoconductive antennas excited by 780 nm wavelength optical pulses.

© 2007 Optical Society of America

OCIS Codes
(160.5140) Materials : Photoconductive materials
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:

Original Manuscript: March 23, 2007
Revised Manuscript: April 23, 2007
Manuscript Accepted: May 10, 2007
Published: July 3, 2007

J. Mangeney, N. Chimot, L. Meignien, N. Zerounian, P. Crozat, K. Blary, J. F. Lampin, and P. Mounaix, "Emission characteristics of ion-irradiated In0.53Ga0.47As based photoconductive antennas excited at 1.55 µm," Opt. Express 15, 8943-8950 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Warren, N. Katzenellenbogen, D. Grisckowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, "Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers," Appl. Phys. Lett 58, 1512-1514 (1991). [CrossRef]
  2. J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, "Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches," Solid State Commun. 136, 595-599 (2005). [CrossRef]
  3. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation," Appl. Phys. Lett. 86, 1104-1106 (2005). [CrossRef]
  4. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, J. F. Lampin, "Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 µm," Appl. Phys. Lett. 87, 193510-193512 (2005). [CrossRef]
  5. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 µm femtosecond optical pulses," Appl. Phys. Lett. 86, 163504-163506 (2005). [CrossRef]
  6. Tze-An Liu, M. Tani, and Ci-Ling Pan, "THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas," J. Appl. Phys. 93, 2996-3001 (2003). [CrossRef]
  7. B. Salem, D. Morris, V. Aimez, J. Beauvais and D. Houde, "Improved characteristics of a terahertz set-up built with an emitter and a detector made on proton-bombarded GaAs photoconductive materials," Semicond. Sci. Technol. 21, 283-286 (2006). [CrossRef]
  8. S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, "High-power narrow-band terahertz generation using large-aperture photoconductors," IEEE J. Quantum Electron. 35, 1257 (1999). [CrossRef]
  9. M. Tani, S. Matsura, K. Sakai, and S. Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Appl. Opt. 36, 7853-7859 (1997). [CrossRef]
  10. T.-A. Liu, G.-R. Lin, Y.-C. Lee, S. C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, "Dark current and trailing-edge suppression in ultrafast photoconductive switches and terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs," J. Appl. Phys. 98, 013711-013714 (2005). [CrossRef]
  11. D. Vignaud, J. F. Lampin and F. Mollot, "Two-photon absorption in InP substrates in the 1.55 m range," Appl. Phys. Lett. 85, 239-241 (2004). [CrossRef]
  12. J. P. Biersack and L. G. Haggmark, "A Monte Carlo program for the transport of energetic ions in amorphous targets," Nucl. Instrum. Methods 174, 257 (1980). [CrossRef]
  13. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, "Generation and detection of terahertz pulses from biased semiconductor antennas," J. Opt. Soc. Am. B 13, 2424-2436 (1996). [CrossRef]
  14. S.-G. Park, M. R. Melloch, and A. M. Weiner, "Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling," IEEE J. Quantum Electron. 35, 810-819 (1999). [CrossRef]
  15. L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, "Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas," IEEE J. Sel. Top. Quantum Electron. 7, 615-623 (2001). [CrossRef]
  16. This value is consistent with the values given by P.Y. Yu, M. Cardona, "Fundamentals of Semiconductors," 2nd ed., (Springer, 1999) p. 290.
  17. L. Joulaud, J. Mangeney, J.-M. Lourtioz, and P. Crozat, and G. Patriarche "Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime," Appl. Phys. Lett. 82, 856-858 (2003). [CrossRef]
  18. E. Castro-Camus, J. Lloyd-Hughes and M. B. Johnston, "Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches," Phys. Rev. B 71, 195301-195307 (2005). [CrossRef]
  19. D. S. Kim and D. S. Citrin, "Coulomb and radiation screening in photoconductive terahertz sources," Appl. Phys. Lett. 88, 161117-161119 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited