OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 9090–9095

Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function

Ryan P. Scott, Theresa D. Mulder, Katherine A. Baker, and Brian H. Kolner  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 9090-9095 (2007)
http://dx.doi.org/10.1364/OE.15.009090


View Full Text Article

Enhanced HTML    Acrobat PDF (156 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The amplitude and envelope phase noise of a modelocked laser are shown to depend directly on the pump laser amplitude stability. We characterize the sensitivity of this process by a noise transfer function which represents the complex amplitude-to-amplitude modulation (AM-AM) and amplitude-to-phase modulation (AM-PM) conversion gain of the pump-induced amplitude and phase noise, respectively. We find that a linearized laser model extrapolated from relaxation oscillation theory, combined with a thermal model, adequately describe the principal features of the response from <1 Hz to 10 MHz.

© 2007 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.3430) Lasers and laser optics : Laser theory
(140.3590) Lasers and laser optics : Lasers, titanium
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.6810) Lasers and laser optics : Thermal effects
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 14, 2007
Revised Manuscript: June 29, 2007
Manuscript Accepted: July 4, 2007
Published: July 9, 2007

Citation
Ryan P. Scott, Theresa D. Mulder, Katherine A. Baker, and Brian H. Kolner, "Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function," Opt. Express 15, 9090-9095 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-9090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Diddams, L. Hollberg, L.-S. Ma, and L. Robertsson, "Femtosecond-laser-based optical clockwork with instability ≤ 6.3×10−16 in 1 s," Opt. Lett. 27, 58-60 (2002). [CrossRef]
  2. B. Ilan, M. J. Ablowitz, and S. T. Cundiff, "Quantum-noise limit on the linewidth of frequency combs," in Proceedings of the Conference on Lasers and Electro-Optics (CLEO 2007) (Optical Society of America, 2007), paper CTuJ2. [CrossRef]
  3. B. Willke, S. Brozek, K. Danzmann, V. Quetschke, and S. Gossler, "Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source," Opt. Lett. 25, 1019-1021 (2000). [CrossRef]
  4. B. R. Washburn, W. C. Swann, and N. R. Newbury, "Response dynamics of the frequency comb output from a femtosecond fiber laser," Opt. Express 13, 10622-10633 (2005). [CrossRef] [PubMed]
  5. L. Matos, O. D. Mucke, C. Jian, and F. X. Kartner, "Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers," Opt. Express 14, 2497-2511 (2006). [CrossRef] [PubMed]
  6. R. P. Scott, B. H. Kolner, C. Langrock, R. L. Byer, and M. M. Fejer, "Ti:sapphire laser pump-noise transfer function," in Proceedings of the Conference on Lasers and Electro-Optics (CLEO 2003) (Optical Society of America, 2003), paper CFB2.
  7. B. H. Kolner, R. P. Scott, and C. Langrock, "Laser phase noise degradation from thermal effects due to pump power fluctuations," in Proceedings of the 2003 IEEE/LEOS Summer Topical Meeting on Photonic Time/Frequency Measurement and Control (IEEE, 2003), paper TuC3.3.
  8. F. W. Helbing, G. Steinmeyer, U. Keller, R. S. Windeler, J. Stenger, and H. R. Telle, "Carrier-envelope offset dynamics of modelocked lasers," Opt. Lett. 27, 194-196 (2002). [CrossRef]
  9. R. P. Scott, C. Langrock, and B. H. Kolner, "High dynamic range laser amplitude and phase noise measurement techniques," IEEE J. Sel. Top. Quantum Electron. 7, 641-655 (2001). [CrossRef]
  10. A. E. Siegman, Lasers (University Science Books, 1986).
  11. H. G. Danielmeyer and F. W. Ostermayer, Jr., "Diode-pump-modulated Nd:YAG laser," J. Appl. Phys. 43, 2911- 2913 (1972). [CrossRef]
  12. H. A. Haus and A. Mecozzi, "Noise of mode-locked lasers," IEEE J. Quantum Electron. 29, 983-996 (1993). [CrossRef]
  13. C. R. Menyuk, J. K. Wahlstrand, J. Willits, R. P. Smith, T. Schibli, and S. T. Cundiff, "Pulse dynamics in modelocked lasers: relaxation oscillations and frequency pulling," Opt. Express 15, 6677-6689 (2007). [CrossRef] [PubMed]
  14. A. K. Cousins, "Temperature and thermal stress in finite-Length end-Pumped laser rods," IEEE J. Quantum Electron. 28, 1057-1069 (1992). [CrossRef]
  15. T. D. Mulder, R. P. Scott, K. A. Baker, and B. H. Kolner, "Characterization of the complex noise transfer function of a modelocked Ti:sapphire laser," in Proceedings of the Conference on Lasers and Electro-Optics (CLEO 2007) (Optical Society of America, 2007), paper JThD38. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited