OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 9096–9106

Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model

Enbo Zhou, Xinliang Zhang, and Dexiu Huang  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 9096-9106 (2007)
http://dx.doi.org/10.1364/OE.15.009096


View Full Text Article

Enhanced HTML    Acrobat PDF (294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dynamic characteristics of semiconductor optical amplifiers (SOAs) with certain facet reflection in different operation conditions are theoretically investigated with a detailed wideband model. Influences of different facets reflectivities are numerically simulated for different lengths of active regions. The results indicate that the gain recovery time can be reduced to 50% of the initial value while the other related characteristics are optimized for appropriate facets reflections. A half reflective semiconductor optical amplifier (HR-SOA) with a cleaved facet on rear facet and an antireflection coating on front facet can speed up the gain recovery with easy realization and low cost. The related characteristics of this structure are evaluated. It’s also indicated that the gain recovery has further potential to be reduced as low as twenties picoseconds for a long active region.

© 2007 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Optoelectronics

History
Original Manuscript: March 2, 2007
Revised Manuscript: June 1, 2007
Manuscript Accepted: June 25, 2007
Published: July 9, 2007

Citation
Enbo Zhou, Xinliang Zhang, and Dexiu Huang, "Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model," Opt. Express 15, 9096-9106 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-9096


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989). [CrossRef]
  2. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14942-954 (1996). [CrossRef]
  3. R. S. T. G. Eisenstein, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," Appl. Phys. Lett. 54, 454-456 (1989). [CrossRef]
  4. P. J. A. Thiis, L. F. Tiemeijer, J. J. M. Binsma, and T. Van Dongen, "Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 30, 477-499 (1994). [CrossRef]
  5. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells," IEEE Photon. Technol. Lett. 18, 2323-2325 (2006). [CrossRef]
  6. H. Sun, Q. Wang, H. Dong, G. Zhu, N. K. Dutta, and J. Jaques, "Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir," IEEE Photon. Technol. Lett. 18, 196-198 (2006). [CrossRef]
  7. S. S. P. Borri, W. Langbein, and U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, and Zh. I. Alferov, D. Ouyang and D. Bimberg "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-µm-wavelength at room temperature," Appl. Phys. Lett.  79, 2633-2635 (2001). [CrossRef]
  8. M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000). [CrossRef]
  9. G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices," IEEE J. Quantum Electron. 39, 1305-1313 (2003). [CrossRef]
  10. A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation," IEEE J. Quantum Electron. 42, 313-323 (2006). [CrossRef]
  11. A. Joon Tae, L. Jong Moo, and K. Kyong Hon, "Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission," Electron. Lett. 39, 1140-1141 (2003). [CrossRef]
  12. P. Jongwoon, L. Xun, and H. Wei-Ping, "Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors," IEEE J. Quantum Electron. 39, 1415-1423 (2003). [CrossRef]
  13. Y. Liu, E. Tangdiongga, Z. Li, Z. Shaoxian, W. Huug de, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006). [CrossRef]
  14. P. S. Andre, A. J. Teixeira, J. L. Pinto, and J. F. Rocha, "Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers," presented at the Microwave and Optoelectronics Conference, 2001. IMOC 2001. Proceedings of the 2001 SBMO/IEEE MTT-S International, 2001.
  15. D. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983). [CrossRef]
  16. T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion," J. Lightwave Technol. 10, 1056-1065 (1992). [CrossRef]
  17. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001). [CrossRef]
  18. D-X. Wang, J. Buck, K. Brennan and I. Ferguson, "Numerical model of wavelength conversion through cross-gain modulation in semiconductor optical amplifiers," Appl. Opt. 45, 4701-4708 (2006) [CrossRef] [PubMed]
  19. M. G. Davis and R. F. O'Dowd, "A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers," IEEE J. Quantum Electron. 30, 2458-2466 (1994). [CrossRef]
  20. A. Yariv, Optical Electronics in Modern Communications 5th ed., (Oxford University Press, New York, 1997).
  21. A. M. a. J. Mørk, "Saturation induced by picosecond pulses in semiconductor optical amplifiers " J. Opt. Soc. Am. B. 14, 761 (1997). [CrossRef]
  22. Y. Boucher and A. Sharaiha, "Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers," IEEE J. Quantum Electron. 36, 708-720 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited