OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9176–9183

Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces

J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9176-9183 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical radiation propagating in a fiber is used to deposit commercially available, single-walled carbon nanotubes on cleaved optical fiber end faces and fiber connectors. Thermophoresis caused by heating due to optical absorption is considered to be a likely candidate responsible for the deposition process. Single-walled carbon nanotubes have a fast saturable absorption over a broad wavelength range, and the demonstrated technique is an extremely simple and inexpensive method for making fiber-integrated, saturable absorbers for passive modelocking of fiber lasers. Pulse widths of 247 fs are demonstrated from an erbium-doped fiber laser operating at 1560 nm, and 137 fs pulses are demonstrated from an amplified Yb-doped fiber laser at 1070 nm.

© 2007 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 30, 2007
Revised Manuscript: June 12, 2007
Manuscript Accepted: June 12, 2007
Published: July 11, 2007

J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni, "Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces," Opt. Express 15, 9176-9183 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y.-C. Chen, N. R. Raraviker, Y. P. Zhao, L. S. Schadler, P. M. Ajayan, T. M. Lu, G. C. Wang, and X. C. Zhang, "Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm," Jpn. J. Appl. Phys. 81, 975-977 (2002).
  2. Y. Sakakibara, S. Tatsuura, H. Kataura, M. Tokumoto, and Y. Achiba, "Near-infrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation method," Jpn. J. Appl. Phys. 42, 494-496 (2003). [CrossRef]
  3. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, "Optical properties of single-wall carbon nanotubes," Synth. Met. 103, 2555-2558 (1999). [CrossRef]
  4. S. Y. Set, H. Yaguchi, Y. Tanaka, andM. Jablonski, "Laser mode locking using a saturable absorber incorporating carbon nanotubes," J. Lightwave Technol. 22, 51-56 (2004). [CrossRef]
  5. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, "Saturable absorbers incorporating carbon nanotubes directly syntehsized onto substrates and fibers and their application to mode-locked fiber lasers," Opt Lett. 29, 1581-1583 (2004). [CrossRef] [PubMed]
  6. M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, "Polymer saturable absorber materials in the 1.5 μm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their applilcation to a femtosecond laser," Opt. Lett. 31, 915-917 (2006). [CrossRef] [PubMed]
  7. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, "Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers," Opt. Lett. 32, 148-150 (2007). [CrossRef]
  8. Y.-W. Song, S. Yamashita, E. Einarsson, and S. Maruyama, "All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film," Opt. Lett. 32, 1399-1401 (2007). [CrossRef] [PubMed]
  9. C. S. Goh, K. Kikuchi, S. Y. Set, D. Tanaka, T. Kotake,M. Jablonski, S. Yamashita, and T. Kobayashi, "Femtosecond mode-locking of a Ytterbium-doped fiber laser using a carbon-nanotube-based mode-locker with ultra-wide absorption band," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies 2005, p. CThG2 (Optical Society of America, Washington, DC, 2005).
  10. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, "Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes," Opt. Express 13, 8025-8030 (2005). [CrossRef] [PubMed]
  11. J.W. Nicholson, "Optically assisted deposition of carbon nanotube saturable absorbers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007 Technical Digest, p. CMU6 (Optical Society of America, Wasington, DC, 2007).
  12. K. Kashiwagi, S. Yamasita, and S. Y. Set, "Novel cost effective Carbon Nanotubes deposition technique using optical tweezer effect," in Proceedings of the SPIE Vol. 6478; Photonics Packaging, Integration and Interconnects VII, A. M. Earman and R. T. Chen, eds., pp. 6478-15 (SPIE, 2007).
  13. A. Ashkin, J. M. Dziedzic, and P. W. Smith, "Continuous-Wave Self-Focusing and Self-Trapping of Light in Artificial Kerr Media," Opt. Lett. 7, 276-278 (1982). [CrossRef] [PubMed]
  14. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient Force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  15. J. Plewa, E. Tanner, D. M. Mueth, and D. G. Grier, "Processing carbon nanotubes with Holographic Optical Tweezers," Opt. Express 12, 1978-1981 (2004). [CrossRef] [PubMed]
  16. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a Fiber-Optical Light-Force Trap," Opt. Lett. 18, 1867-1869 (1993). [CrossRef] [PubMed]
  17. Z. Hu, J. Wang, and J. Liang, "Manipulation and Arrangement of Biological and Dielectric particles by a Lensed fiber probe," Opt. Express 12, 4123-4128 (2004). [CrossRef] [PubMed]
  18. Z. Liu, C. Guo, J. Yang, and L. Yuan, "Tapered Fiber Optical Tweezers for Microscopic particle trapping: Fabrication and Application," Opt. Express 14, 12510-12516 (2006). [CrossRef]
  19. P. W. Smith, A. Ashkin, and W. J. Tomlinson, "Four-wave mixing in an artificial Kerr Medium," Opt. Lett. 6, 284-286 (1981). [CrossRef] [PubMed]
  20. G. S. McNab and A. Meisen, "Thermophoresis in Liquids," J. Colloid Interface Sci. 44, 339-346 (1973). [CrossRef]
  21. E. Ruckenstein, "Can Phoretic motions be treated as Interfacial Tension Gradient Driven Phenomena," J. Colloid Interface Sci. 83, 77-81 (1981). [CrossRef]
  22. A. F. Andreev, "Thermophoresis in Liquids," Sov. Phys. JETP 67, 117-120 (1988).
  23. J. C. Giddings, P. M. Shiundu, and S. N. Semenov, "Thermophoresis of metal particles in a liquid," J. Colloid Interface Sci. 176, 454-458 (1995). [CrossRef]
  24. P. M. Shiundu, S. M. Munguti, and S. K. R. Williams, "Retention behavior of metal particle dispersions in Aqueous and Nonaqueous carriers in thermal field-flow Fractionation," J. Chrom. A 983, 163-176 (2003). [CrossRef]
  25. Carbon Nanotechnologies, Inc, http://www.cnanotech.com/
  26. Southwest Nanotechnologies, http://www.swnano.com/
  27. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Anomalous dispersion in a Solid, Silica-Based Fiber," Opt. Lett. 31, 2532-2534 (2006). [CrossRef] [PubMed]
  28. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, "A Passively-modelocked, Yb-Doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber," Opt. Express 15, 6623-6628 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2535 KB)     
» Media 2: MOV (2814 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited