OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9326–9340

Fringe generation with non-uniformly coated long-period fiber gratings

Ignacio Del Villar, Francisco J. Arregui, Ignacio R. Matias, Andrea Cusano, Domenico Paladino, and Antonello Cutolo  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9326-9340 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, the spectral characteristics of non-uniform symmetrically ring shaped coatings deposited on long-period fiber gratings (LPFGs) have been theoretically and experimentally investigated. To optimize the structure performances, the device was designed with a simulation tool based on vectorial analysis of modes in a multilayer cylindrical waveguide and coupled mode theory. Electrostatic self-assembling technique was selected to deposit with fine control uniform azimuthally symmetric coatings on the cladding of the LPFG. UV laser micromachining operating at 193nm was used to selectively remove the coating with high spatial resolution and with azimuthal symmetry. By locally and selectively removing portions of the overlay surrounding the LPFG from the middle of the grating, strong modifications of its spectral characteristics were observed. Phase-shift effects and multiple interference fringes have been observed for all the attenuation bands, strongly depending on the length of the uncoated region and the overlay features (thickness and optical properties). This provides a valid technological platform for the development of advanced photonic devices for sensing and telecommunication applications.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.2180) Lasers and laser optics : Excimer lasers
(260.2110) Physical optics : Electromagnetic optics
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 9, 2007
Revised Manuscript: June 13, 2007
Manuscript Accepted: June 13, 2007
Published: July 13, 2007

Ignacio Del Villar, Francisco J. Arregui, Ignacio R. Matias, Andrea Cusano, Domenico Paladino, and Antonello Cutolo, "Fringe generation with non-uniformly coated long-period fiber gratings," Opt. Express 15, 9326-9340 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan and J. E. Spie, "Long-period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996). [CrossRef]
  2. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003). [CrossRef]
  3. J. R. Qiang and H. E. Chen, "Gain flattening fibre filters using phase shifted long period fibre grating," Electron. Lett. 34, 1132-1133 (1998). [CrossRef]
  4. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark and A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997). [CrossRef] [PubMed]
  5. K. W. Chung and S. Yin, "Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling," Opt. Lett. 29, 812-814 (2004). [CrossRef] [PubMed]
  6. M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002). [CrossRef]
  7. X. Chen, K. Zhou, L. Zhang, and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," IEEE Photon. Technol. Lett. 16, 1352-1354 (2004). [CrossRef]
  8. T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005). [CrossRef]
  9. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999). [CrossRef]
  10. B. H. Lee and J. Nishii, "Bending sensitivity in-series long-period fiber gratings," Opt. Lett. 23, 1624-1626 (1998). [CrossRef]
  11. T. Allsop, R. Reeves, D. J. Webb, I. Bennion and R. Neal, "A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer," Rev. Sci. Instrum. 73, 1702-1705 (2002). [CrossRef]
  12. Jin-Fei Ding, A. P. Zhang, Li-Yang Shao, Jin-Hua Yan, and Sailing He, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett. 17, 1247-1249 (2005). [CrossRef]
  13. A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, "Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature," IEEE Photon. Technol. Lett. 17, 2397-2399 (2005). [CrossRef]
  14. I. Del Villar, M. Achaerandio, F. J. Arregui and I. R. Matias, "Generation of selective fringes with cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1412 (2006). [CrossRef]
  15. R. Slavik, "Extremely deep long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006). [CrossRef]
  16. N. D. Rees, S. W. James, R. P. Tatam and G. J. Ashwell, "Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays," Opt. Lett. 27, 686-688 (2002). [CrossRef]
  17. I. Del Villar, M. Achaerandio, I. R. Matias and F. J. Arregui, "Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings," Opt. Lett. 30, 720-722 (2005). [CrossRef] [PubMed]
  18. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo and M. Giordano, "Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity," Opt. Lett. 30, 2536-2538 (2005). [CrossRef] [PubMed]
  19. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano and G. Guerra, "High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water," Appl. Phys. Lett. 87, 234105 (2005). [CrossRef]
  20. Z. Y. Wang, J. R. Heflin, R. H. Stolen, S. Ramachandran, "Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings," Opt. Express 13, 2808-2813 (2005). [CrossRef] [PubMed]
  21. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, "Mode transition in high refractive index coated long period gratings," Opt. Express 14, 19-34 (2006). [CrossRef] [PubMed]
  22. I. Del Villar, I. R. Matias and F. J. Arregui, "Deposition of coatings on long-period fiber gratings: tunnel effect analogy," Opt. Quantum Electron. 38, 655-665 (2006). [CrossRef]
  23. D. W. Kim, Y. Zhang, K. L. Cooper and A. Wang, "Fibre-optic interferometric immuno-sensor using long period grating," Electron. Lett. 21, 324-325 (2006). [CrossRef]
  24. Q. Chen, J. Lee, M. R. Lin, Y. Wang, S. S. Yin, Q. M. Zhang and K. A. Reichard "Investigation of tuning characteristics of electrically tunable long-period gratings with a precise four-layer model," J. Lightwave Technol. 24, 2954-2962 (2006). [CrossRef]
  25. S. W. James, I. Ishaq, G. J. Ashwell and R. P. Tatam, "Cascaded long-period gratings with nanostructured coatings," Opt. Lett. 30, 2197-2199 (2005). [CrossRef] [PubMed]
  26. E. Anemogiannis, E. N. Glytsis and T. K. Gaylord, "Transmission characteristics of long- period fiber gratings having arbitrary azimutal/radial refractive index variation," J. Lightwave Technol. 21, 218-227 (2003). [CrossRef]
  27. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  28. G. W. Chern and L. A. Wang, "Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings," J. Opt. Soc. Am. A 16, 2675-2689 (1999). [CrossRef]
  29. G. Decher, "Fuzzy Nanoassemblies: toward layered polymeric multicomposites," Science 277, 1232-1237, (1997). [CrossRef]
  30. F. J. Arregui, I. Latasa, I. R. Matías and R. O. Claus, "An optical fiber pH sensor based on the electrostatic self-assembly method," Proc. of the IEEE Sensors 1, 107-110 (2003).
  31. I. Del Villar, I. R. Matias, F. J. Arregui and M. Achaerandio, "Nanodeposition of materials with complex refractive index in long-period fiber gratings," J. Lightwave Technol. 23, 4192-4199 (2005). [CrossRef]
  32. K. W. Chung and S. Yin, "Design of a phase-shifted long-period grating using the partial-etching technique," Microwave Opt. Technol. Lett. 45, 18-21 (2005). [CrossRef]
  33. Y. Liu, J. A. R. Williams, L. Zhang and I. Bennion, "Phase shifted and cascaded long-period fiber gratings," Opt. Commun. 164, 27-31 (1999). [CrossRef]
  34. S. Khaliq, S. W. James and R. P. Tatam "Fiber-optic liquid-level sensor using a long-period grating," Opt. Lett. 26, 1224-1226 (2001) [CrossRef]
  35. I. Riant and F. Haller, "Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging," J. Lightwave Technol. 15, 1464-1469 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited