OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9394–9402

Three-dimensional color object visualization and recognition using multi-wavelength computational holography

Seokwon Yeom, Bahram Javidi, Pietro Ferraro, Domenico Alfieri, Sergio DeNicola, and Andrea Finizio  »View Author Affiliations


Optics Express, Vol. 15, Issue 15, pp. 9394-9402 (2007)
http://dx.doi.org/10.1364/OE.15.009394


View Full Text Article

Enhanced HTML    Acrobat PDF (1285 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we address 3D object visualization and recognition with multi-wavelength digital holography. Color features of 3D objects are obtained by the multiple-wavelengths. Perfect superimposition technique generates reconstructed images of the same size. Statistical pattern recognition techniques: principal component analysis and mixture discriminant analysis analyze multi-spectral information in the reconstructed images. Class-conditional probability density functions are estimated during the training process. Maximum likelihood decision rule categorizes unlabeled images into one of trained-classes. It is shown that a small number of training images is sufficient for the color object classification.

© 2007 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.5010) Image processing : Pattern recognition
(100.6890) Image processing : Three-dimensional image processing

ToC Category:
Holography

History
Original Manuscript: April 17, 2007
Revised Manuscript: June 20, 2007
Manuscript Accepted: June 21, 2007
Published: July 16, 2007

Citation
Seokwon Yeom, Bahram Javidi, Pietro Ferraro, Domenico Alfieri, Sergio DeNicola, and Andrea Finizio, "Three-dimensional color object visualization and recognition using multi-wavelength computational holography," Opt. Express 15, 9394-9402 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Mahalanobis and F. Goudail, "Methods for automatic target recognition by use of electro-optic sensors: introduction to the feature Issue," Appl. Opt. 43, 207-209 (2004). [CrossRef]
  2. F. A. Sadjadi, "IR target detection using probability density functions of wavelet transform subbands," Appl. Opt. 43, 315-323 (2004). [CrossRef] [PubMed]
  3. B. Javidi, ed., Optical Imaging Sensors and Systems for Homeland Security Applications (Springer, NewYork, 2005).
  4. F. Goudail and P. Refregier, "Statistical algorithms for target detection in coherent active polarimetric images," J. Opt. Soc. Am. 18, 3049-3060 (2001). [CrossRef]
  5. B. Javidi and E. Tajahuerce, "Three-dimensional object recognition by use of digital holography," Opt. Lett. 25, 610-612 (2000). [CrossRef]
  6. Y. Frauel, E. Tajahuerce, M. Castro, and B. Javidi, "Distortion-tolerant three-dimensional object recognition with digital holography," Appl. Opt. 40, 3887-3893 (2001). [CrossRef]
  7. Y. Frauel and B. Javidi, "Neural network for three-dimensional object recognition based on digital holography," Opt. Lett. 26, 1478-1480 (2001). [CrossRef]
  8. S. Yeom and B. Javidi, "Three-dimensional object feature extraction and classification with computational holographic imaging," Appl. Opt. 43, 442-451 (2004). [CrossRef] [PubMed]
  9. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, "Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography," Opt. Express 13, 4492-4506 (2005). [CrossRef] [PubMed]
  10. S. Yeom, I Moon, and B. Javidi, "Real-time 3D sensing, visualization and recognition of dynamic biological micro-organisms," Proc. IEEE 94, 550-566 (2006). [CrossRef]
  11. J. Maycock, T. Naughton, B. Hennely, J. McDonald, and B. Javidi, "Three-dimensional scene reconstruction of partially occluded objects using digital holograms," Appl. Opt. 45, 2975-2985 (2006). [CrossRef] [PubMed]
  12. I. Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002). [CrossRef]
  13. J. Kato, I. Yamaguchi, and T. Matsumura, "Multicolor digital holography with an achromatic phase shifter," Opt. Lett. 27, 1403-1405 (2003). [CrossRef]
  14. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-855 (2004). [CrossRef] [PubMed]
  15. D. Alfieri, G. Coppola, S. D. Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, "Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength," Opt. Commun. 260, 113-116 (2006). [CrossRef]
  16. U. Schnars, and W. Juptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  17. P. Almoro, W. Garcia, and C. Saloma, "Colored object recognition by digital holography and a hydrogen Raman shifter," Opt. Express 15, 7176-7181 (2007). [CrossRef] [PubMed]
  18. A. K. Jain, Fundamentals of digital image processing (Prentice-Hall Inc., 1989).
  19. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification 2nd ed. (Wiley Interscience, New York, 2001).
  20. K. Fukunaga, Introduction to Statistical Pattern Recognition 2nd ed. (Academic Press, Boston, 1990).
  21. C. M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, New York, 1995).
  22. C. Fraley and A. E. Raftery, "Model-based clustering, discriminant analysis, and density estimation," J. of Am. Stat. Assoc. 97, 611-631 (2002). [CrossRef]
  23. T. Hastie and R. Tibshirani, "Discriminant analysis by Gaussian mixtures," J. Royal Statistical Society B 58, 155-176 (1996).
  24. G. J. McLachlan, Discriminant analysis and statistical pattern recognition (Wiley, New York, 1992). [CrossRef]
  25. M. M. Dundar and D. Landgrebe, "A model-based mixture-supervised classification approach in hyperspectral data analysis," IEEE. Trans. Geoscience and remote sensing 40, 2692-2699 (2002). [CrossRef]
  26. M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, "Simultaneous feature selection and clustering using mixture models," IEEE. Trans. on Pattern Anal. Mach. Intell. 26, 1154-1166 (2004) [CrossRef]
  27. B. J. Frey and N. Jojic, "Transformation-invariant clustering using the EM algorithm," IEEE Trans. on Pattern Anal. Mach. Intell. 25, 1-17 (2003). [CrossRef]
  28. Y. Linde, A. Buzo, and R. M. Gray, "An algorithm for vector quantizer design," IEEE Trans. Commun. COM- 2884-95 (1980). [CrossRef]
  29. J. Jang, S. Yeom, and B. Javidi, "Compression of ray information in three-dimensional integral imaging," Opt. Eng.  44, 12700-1~10 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2157 KB)     
» Media 2: AVI (2157 KB)     
» Media 3: AVI (2157 KB)     
» Media 4: AVI (2157 KB)     
» Media 5: AVI (2157 KB)     
» Media 6: AVI (2157 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited