OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9403–9417

Single-Frequency operation of External-Cavity VCSELs: Non-linear multimode temporal dynamics and quantumlimit

A. Garnache, A. Ouvrard, and D. Romanini  »View Author Affiliations


Optics Express, Vol. 15, Issue 15, pp. 9403-9417 (2007)
http://dx.doi.org/10.1364/OE.15.009403


View Full Text Article

Enhanced HTML    Acrobat PDF (9208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an experimental and theoretical investigation of the non-linear multimode dynamics of external–cavity VCSELs emitting at 1 and 2.3 μm. We account for the stable single–frequency and linearly polarized emission by these laser sources, even in the presence of quantum noise and non-linear mode interactions originating from Four–Wave–Mixing via population pulsations in the quantum-wells. This fact is a consequence of the mode antiphase dynamics. Thanks to the high-Q external cavity configuration, the laser dynamics fall into the oscillation-relaxation-free class-A regime. The characteristic time to achieve single mode emission is ~1 ms for a 15 mm long cavity with an antireflection coated structure and no spectral filter, as for an “ideal” homogeneous gain laser. The side mode suppression ratio is as high as 40 dB, close to the quantum limit. The laser linewidth is at the quantum limit, and is ~1 Hz at 1mW output. An experimental value <20 kHz has been established. Under standard conditions, without spectral filtering, the optimum cavity length for highly coherent single mode operation is expected in the range 5 to 30 mm. Finally, for cavity lengths typically shorter than 5 mm, we rather have an “ideal” homogeneous gain class-B laser, exhibiting oscillation-relaxation of the intensity in the 0.1 GHz range. These properties contrast with the intrinsic strongly non-linear dynamics of conventional semiconductor lasers.

© 2007 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3570) Lasers and laser optics : Lasers, single-mode
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 26, 2007
Revised Manuscript: May 21, 2007
Manuscript Accepted: May 22, 2007
Published: July 16, 2007

Citation
A. Garnache, A. Ouvrard, and D. Romanini, "Single–Frequency operation of External–Cavity VCSELs: Non-linear multimode temporal dynamics and quantum limit.," Opt. Express 15, 9403-9417 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9403


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Méndez, "2-2.7 μm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External-cavity VCSELs, DFB," Proc. SPIE Photonics Europe, Semiconductor lasers and laser dynamics pp. 6184-23 (2006).
  2. S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003). [CrossRef]
  3. A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3 μm," IEEE Photon. Technol. Lett. 17, 128-134 (2005). [CrossRef]
  4. M. Holm, D. Burns, and A. Ferguson, "Actively Stabilized Single-Frequency Vertical-External-Cavity AlGaAs Laser," IEEE Photon. Technol. Lett. 11, 1551-1553 (1999). [CrossRef]
  5. A. Garnache, A. Kachanov, F. Stoeckel, and R. Houdre, "Diode-pumped broadband Vertical-External-Cavity Surface-Emitting semiconductor Laser. Application to high sensitivity intracavity laser absorption spectroscopy," J. Opt. Soc. Am. B 17, 1589 (2000). [CrossRef]
  6. S. Kovalenko, S. Semin, and D. Toptygin, "Influence of the Raman mode interaction on the lasing kinetics of a wide-band ring laser," Sov. J. Quantum Electron. 21(4), 407-411 (1991). [CrossRef]
  7. L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, "High Temperature CW Operation of Sb-Based Vertical External Cavity Surface Emitting Laser near 2.3 μm," J. Cryst. Growth 268, 128 (2004). [CrossRef]
  8. M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. BIn press (2006).
  9. S. Hodges, M. Munroe, J. Cooper, and M. Raymer, "Multimode laser model with coupled cavities and quantum noise," J. Opt. Soc. Am. B 14, 191-199 (1997). [CrossRef]
  10. A. Garnache, S. Hoogland, A. Tropper, I. Sagnes, G. Saint-Girons, and J. Roberts, "Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power," Appl. Phys. Lett. 80, 3892-3894 (2002). [CrossRef]
  11. A. Garnache, "Study and realization of new types of near-IR lasers for high sensitivity intra-cavity-laser-absorption-spectroscopy application. Strongly multimode laser dynamics." Ph.D. thesis, Joseph Fourier University, Grenoble (1999).
  12. A. Garnache, A. Bouchier, E. K. Attarbaoui, A. Ouvrard, L. Cerutti, and E. Cerda-M endez, "Sb-based type-I Quantum-Well Gain and Quantum Efficiency study. Application to 2.3 μm VCSELs," Proc. EOS annual meeting, Paris, Photonic Devices in Space (TOM 5) (2006).
  13. S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, "Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy," JETP Lett. 55, 581-585 (1992).
  14. M. Yamada, "Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers," J. Appl. Phys. 66, 81-89 (1989). [CrossRef]
  15. L. A. Coldren and S. W. Corzine, Diode lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  16. M. Grundmann, "How a quantum-dot laser turns on," Appl. Phys. Lett. 77, 1428-1430 (2000). [CrossRef]
  17. P. A. Khandokhin, I. V. Koryukin, Y. I. Khanin, and P. Mandel, "Influence of carrier diffusion on the dynamics of a two-mode laser," IEEE J. Quantum Electron. 31, 647-652 (1995). [CrossRef]
  18. S. A. Kovalenko, "Quantum intensity fluctuations in multimode cw lasers and maximum sensitivity of intracavity laser spectroscopy," Sov. J. Quantum Electron. 11, 759-762 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited