OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9476–9485

Surface plasmon induced polarization rotation and optical vorticity in a single mode waveguide

P. S. Davids, B. A. Block, M. R. Reshotko, and K. C. Cadien  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9476-9485 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (602 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The control and manipulation of the mode polarization state in a single mode dielectric waveguide is of considerable significance for optical information processing utilizing the polarization state to store digital information and integrated photonic devices used for high speed signaling. Here we report on an integrated on-chip mode polarization rotation based on short metal Cu electrodes placed in close proximity to the dielectric waveguide core. Polarization mode rotation with specific rotation of 104 degrees/mm is observed for offset metallic electrodes placed diagonally along a single mode dielectric waveguide. The mechanism for the polarization rotation is shown to be directional coupling into guided surface plasmon modes at the metal corners and coupling between the guided plasmon modes. This inter-plasmon coupling gives rise to giant polarization rotation and optical vorticity (helical power flow) in the waveguide.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: May 17, 2007
Revised Manuscript: July 13, 2007
Manuscript Accepted: July 15, 2007
Published: July 17, 2007

P. S. Davids, B. A. Block, M. R. Reshotko, and K. C. Cadien, "Surface plasmon induced polarization rotation and optical vorticity in a single mode waveguide," Opt. Express 15, 9476-9485 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966, (2000). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001). [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998). [CrossRef]
  4. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005). [CrossRef] [PubMed]
  5. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanaugh," Strong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004). [CrossRef] [PubMed]
  6. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, (John Wiley & Sons, 1991) [CrossRef]
  7. K. C. Cadien, M. Reshotko, B. Block, A. Bowen, D. Kencke, and P. S. Davids, "Challenges for on-chip optical interconnects," Proc. SPIE 5730, 133 (2005). [CrossRef]
  8. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-plasmon resonance in grating diffraction," Phys. Rev. Lett. 21, 1530 (1968). [CrossRef]
  9. G. I. Stegeman and J. J Burke, "Long-range surface plasmons in electrode structures," Appl. Phys. Lett. 43, 221 (1983). [CrossRef]
  10. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986). [CrossRef]
  11. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10848, (2000). [CrossRef]
  12. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 (2001). [CrossRef]
  13. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express. 12, 5481 (2004). [CrossRef] [PubMed]
  14. P. S. Davids, B. A. Block, and K. C. Cadien, "Surface plasmon polarization filtering in a single mode dielectric waveguide," Opt. Express 13, 7063 (2005). [CrossRef] [PubMed]
  15. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538 (1990). [CrossRef]
  16. A. Taflove, Computational Electromagnetics, (Artech, Boston, 1995).
  17. J. Q. Lu, and A. A. Maradudin, "Channel plasmons," Phys. Rev. B 42, 11159 (1990). [CrossRef]
  18. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon polariton guiding in sub-wavelength metal grooves," Phys. Rev. Lett. 95, 046802, (2005). [CrossRef] [PubMed]
  19. M. Padgett, J. Courtial, and L. Allen," Light’s orbital angular momentum," Phys. Today 35, May (2004).
  20. L. Marrucci, C. Manzo, and D. Paparo," Optical spin to orbital angular momentum conversion in inhomogenous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited