OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9535–9540

Broadband telecommunication wavelength emission in Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics

V.K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9535-9540 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transparent Yb3+, Er3+ and Tm3+ co-doped nano-glass-ceramics 32(SiO2)9(AlO1.5)31.5(CdF2)18.5(PbF2)5.5(ZnF2):3.5(Yb-Er-TmF3), mol%, have been prepared where co-dopants mostly partition in nano-crystals Pb1-x(Yb3+,Er3+,Tm3+)xF2+x embedded in the glass network. The Yb3+ ensures high absorption at 980 nm telecommunication pump wavelength and further phonon-mediated energy transfer to Er3+ and Tm3+ co-dopants. Er3+ and Tm3+ radiate overlapping emission bands from their lowest energy levels, with similar lifetime of about 9 ms, which cover the range between 1.50 to 1.70 µm. The lifetime of all higher levels of Er3+ and Tm3+ dopants is shorter than 70 µs due to short inter-dopant distances in the nano-crystals resulting in fast energy transfer to their lowest levels.

© 2007 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence

ToC Category:

Original Manuscript: April 23, 2007
Revised Manuscript: July 10, 2007
Manuscript Accepted: July 10, 2007
Published: July 17, 2007

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, "Broadband telecommunication wavelength emission in Yb3+-Er3+-Tm3+ co-doped nano-glassceramics," Opt. Express 15, 9535-9540 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. C. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, "Towards the clarity limit in optical fibre," Nature (London) 404, 262-264 (2000). [CrossRef]
  2. E. Desurvire, Erbium-doped Fibre Amplifiers: Materials, Devices and Applications (Wiley, New York, 1994).
  3. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped Fibre Amplifiers: Fundamentals and Technology (Academic, San Diego, 1999).
  4. S. Sudo, ed., Optical Fibre Amplifiers: Materials, Devices, and Applications (Artech House Inc., Boston, 1997).
  5. G. Dantelle, M. Mortier, D. Vivien, G. Patriarche, "Influence of Ce3+-doping on the structure and luminescence of Er3+-doped transparent glass-ceramics," Opt. Mater. 28, 638-642 (2006). [CrossRef]
  6. A. Mori, Y. Ohishi, and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863-865 (1997); A. Mori, T. Sakamoto, K. Kobayashi, K. Ishikano, K. Oikawa, K. Hoshino, T. Kanamori, Y. Ohishi, and H. Shimizu, "1.58 µm broad-band erbium-doped tellurite fibre amplifier," J. Lightwave Technol. 20, 794-799 (2002). [CrossRef]
  7. V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, "Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass-ceramics," Appl. Phys. Lett. 81, 1937-1939 (2002). [CrossRef]
  8. V. Rodriguez, V. K. Tikhomirov, J. Mendez-Ramos, and A. B. Seddon, "The shape of the 1.55 µm emission band of the Er3+-dopant in oxyfluoride nano-scaled glass-ceramics," Europhys. Lett. 69, 128-134 (2005). [CrossRef]
  9. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodríguez, A. B. Seddon, "Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission," Appl. Phys. Lett. 88, art.073111 (2006). [CrossRef]
  10. V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, "Low energy robust host heavily doped with Dy3+ for emission at 1.3 to 1.4 µm," Phys. Status SolidiA 204, 839-845 (2007). [CrossRef]
  11. J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, H. U. Güdel, "Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+," J. Lumin. 117, 1-12 (2006). [CrossRef]
  12. F. Auzel "Upconversion and Anti-Stokes processes with f and d Ions in Solids," Chem. Rev. 105, 139-173 (2004). [CrossRef]
  13. V. K. Tikhomirov, J. Koch, D. Wand, and B. Chichkov, "Fabrication of buried waveguides and nano-crystals in Er3+-doped oxyfluoride glass," Phys. Status SolidiA 202, R73-R75 (2005). [CrossRef]
  14. S. Hull, "Superionics crystal structures and conduction processes," Rep. Prog. Phys. 67, 1233-1314 (2004). [CrossRef]
  15. D. J. M. Bevan, J. Strähle, and O. Greis, "The crystal-structure of tveitite, an ordered yttrofluorite mineral," J. Solid State Chem. 44, 75-81 (1982). [CrossRef]
  16. M. Mattarelli, V. K. Tikhomirov, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G. C. Righini, L. Zampedri, and M. Ferrari, "Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties," J. Non-Cryst. Sol. 345&346, 354-358 (2004). [CrossRef]
  17. Y. H. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993). [CrossRef]
  18. C. Görller-Walrand and K. Binnemans, "Rationalization of crystal field parametrization," in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneider, Jr. and L. Eyring, ed., (North-Holland, Amsterdam, 1996). Vol. .23, p.121.
  19. A. V. Bazhenov, I. S. Smirnova, T. N. Fursova, M. Y. Maksimuk, A. B. Kulakov, and I. K. Bdikin, "Optical phonon spectra of PbF2 single crystals," Phys. Solid State 42, 41-50 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited